前言:一篇好文章的誕生,需要你不斷地搜集資料、整理思路,本站小編為你收集了豐富的類比推理中的邏輯關(guān)系主題范文,僅供參考,歡迎閱讀并收藏。
【關(guān)鍵詞】高中生物 教學(xué)方法 創(chuàng)新
【中圖分類號】G632 【文獻(xiàn)標(biāo)識碼】A 【文章編號】1674-4810(2013)13-0120-02
《普通高中生物課程標(biāo)準(zhǔn)》指出:“學(xué)習(xí)是一個主動建構(gòu)知識、發(fā)展能力、形成正確的情感態(tài)度與價值觀的過程?!苯處熞⒅匕l(fā)展學(xué)生的科學(xué)研究能力,增強學(xué)生對自然的感知力和對社會的責(zé)任感,促使學(xué)生形成正確的世界觀和價值觀。在順應(yīng)新課程理念下,作為合格的高中生物教師,要在教學(xué)中與時俱進(jìn),不斷創(chuàng)新教學(xué)方法。
一 生物實驗法
作為一門實驗學(xué)科,生物學(xué)注重觀察和實驗。在生物教學(xué)中運用生物實驗法顯得尤為重要,生物實驗對于促進(jìn)生物教學(xué)具有重要意義:(1)生物實驗?zāi)苡行У卮龠M(jìn)學(xué)生對基礎(chǔ)知識的理解。在生物實驗中,通過對各種實物的觀察研究,極大地增強了學(xué)生的感性認(rèn)識,鞏固了有關(guān)的理論概念,深化了對教學(xué)原理和規(guī)律的理解,掌握了生物學(xué)研究的基本方法。(2)生物實驗?zāi)苡行У卦鰪妼W(xué)生的生物實驗操作技能。根據(jù)中學(xué)生物學(xué)課程標(biāo)準(zhǔn)規(guī)定的教學(xué)要求,對學(xué)生進(jìn)行生物學(xué)基本技能的訓(xùn)練是重要內(nèi)容,生物實驗可以有效達(dá)到這一目的。(3)生物實驗?zāi)苡行У卦鰪妼W(xué)生發(fā)現(xiàn)問題、分析問題和解決問題的能力。(4)生物實驗?zāi)苡行У嘏囵B(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度和思維習(xí)慣。生物實驗本身具有嚴(yán)密的科學(xué)性,通過正確的實驗方法和實驗步驟,經(jīng)過一定時期的訓(xùn)練,定能很好地達(dá)到預(yù)期的教學(xué)目的。(5)生物實驗?zāi)苡行У嘏囵B(yǎng)學(xué)生團(tuán)隊協(xié)作精神。從現(xiàn)代科學(xué)的發(fā)展規(guī)律可以看出,交叉學(xué)科發(fā)展日新月異、學(xué)科滲透逐漸顯現(xiàn),因此對科學(xué)研究者的協(xié)作精神提出了很高的要求。在生物實驗中,將學(xué)生以小組為單位進(jìn)行劃分,有利于培養(yǎng)學(xué)生的團(tuán)隊協(xié)作精神。
二 反向教學(xué)法
反向教學(xué)法是由已知的結(jié)果,推出問題產(chǎn)生的過程,再推導(dǎo)出問題原因的一種教學(xué)方法。反向教學(xué)設(shè)計提倡從所追求的結(jié)果出發(fā)設(shè)計活動,這就要求教師首先要考慮評估方案,然后再具體設(shè)計活動。在高中生物教學(xué)中,反向教學(xué)法的使用,有著“另辟蹊徑”的作用,在進(jìn)行遺傳解題教學(xué)方面能收到意想不到的效果。跟人們的思維習(xí)慣相反,反向教學(xué)是一種逆向啟發(fā)智力的方式,其原理如同數(shù)學(xué)證明中的反證法,可以巧妙地使得順向不能解決或難以解決的問題得到解決。通過逆向思維的參與,可以有效簡化思維過程,極大地提高思維效率,進(jìn)一步深化對概念和問題的認(rèn)識,提高教學(xué)效率和學(xué)生學(xué)習(xí)的興趣。但是,運用逆向思維要尊重其自身的邏輯規(guī)律,要以符合思維的正確答案為基礎(chǔ),不能為了新奇而故弄玄虛,那就明顯違反了思維的科學(xué)規(guī)律。
三 模型建構(gòu)法
生物知識相對于其他科目而言,是比較零散的。因此,在高中生物教學(xué)中,教師必須有效地解決這一問題,尋求系統(tǒng)地、全面地傳授生物知識的有效方法。實際上,模型建構(gòu)恰能很好地實現(xiàn)上述目標(biāo)。模型構(gòu)建法是通過研究模型來詮釋原型特征、形態(tài)及本質(zhì)的特有的一種邏輯方法。生物教學(xué)模型可以劃分為數(shù)學(xué)模型、抽象模型、實物模型及物理模型四類。其中數(shù)學(xué)模型法指的是以符號、公式等數(shù)學(xué)語言來表征生物學(xué)的知識、現(xiàn)象;抽象模型法指的是通過抽象得到生物原型方面的本質(zhì)屬性而使研究對象得以簡化;實物模型是采用相關(guān)實驗器材或者自制器材來形象展示教學(xué)相關(guān)內(nèi)容的方法;物理模型指的是依照類似原理,將真實事物依照一定比例縮小或者放大成為模型,其狀態(tài)變量與原事物保持一致,但是能夠通過其模擬該事物的性質(zhì)和功能,更加形象地來解釋認(rèn)識對象。其中,模型構(gòu)建法由于其有效作用,成為了高中生物教學(xué)的重要方法之一,也是學(xué)生理解和掌握生物學(xué)知識的有效工具。模型教學(xué)能有效地揭示事物的本質(zhì),有助于幫助學(xué)生將內(nèi)在的邏輯關(guān)系或者抽象概念轉(zhuǎn)化為圖像、公式、實物,拓展其模型構(gòu)建主體的思維,提升其搜集、歸納和總結(jié)信息的能力。
四 類比推理法
類比推理法是合情推理的一種思維形式,它是根據(jù)兩個對象或兩類事物的一些屬性相同或相似,來猜測另一些屬性也可能相同或相似的思維方法。在生物學(xué)的教學(xué)中恰當(dāng)?shù)囊妙惐韧评?,是培養(yǎng)學(xué)生綜合思維能力和創(chuàng)新思維能力的一種好方法,它的實效性也使之被列入課標(biāo)中,是高中生物課程要發(fā)展學(xué)生的科學(xué)探究能力的十一項基本技能之一。類比推理得出的結(jié)論并不具有邏輯的必然性,其正確與否,還需要觀察和實驗的檢驗。可見,類比推理具有較強的探索性、預(yù)測性和創(chuàng)造性,但也不是必然的推理,這就要求教師在仔細(xì)觀察收集材料后,大膽地聯(lián)想,將未知與已知進(jìn)行類比,與此同時也需要不斷檢測其正確性。所以在教學(xué)中,僅把類比推理的含義及過程講清了是遠(yuǎn)遠(yuǎn)不夠的,一定要讓學(xué)生在學(xué)習(xí)過程中仔細(xì)觀察比較,真正理解類比推理的含意與過程,最后達(dá)到掌握并能準(zhǔn)確應(yīng)用類比推理這個方法的目的。
五 結(jié)束語
教學(xué)方法具有動態(tài)生成性、選擇性、綜合性、靈活性和創(chuàng)新性等特點,不僅牽涉到課堂時間和空間上的問題,更受作業(yè)安排、教學(xué)管理、時空安排等課外因素的影響。新課程背景下高中生物課堂的教學(xué)方法創(chuàng)新,充滿機(jī)遇和挑戰(zhàn)。教師應(yīng)根據(jù)課堂教學(xué)目標(biāo)、教學(xué)內(nèi)容、師生的實際、學(xué)校的條件等因素,精心選擇并設(shè)計適宜的教學(xué)方法,最大限度地促進(jìn)生物教學(xué)的有效性。
參考文獻(xiàn)
[1]教育部基礎(chǔ)教育司.普通高中生物課程標(biāo)準(zhǔn)[M].北京:人民教育出版社,2003
[2]劉恩山.中學(xué)生物學(xué)教學(xué)論[M].北京:高等教育出版社,2003
[3]曹莉莉.新課程理念下課堂教學(xué)評價的標(biāo)準(zhǔn)[J].教育科學(xué)研究,2003(Z1):7、8
[4]孫立祥.高中生物學(xué)新課程教學(xué)中教材處理的策略[J].生物學(xué)教學(xué),2011(2)
邏輯思維是一種確定的(a 就是 a)前后一貫的(不相矛盾的)、有條有理的(循序漸進(jìn)的)、有根據(jù)的(理由充分的)思維。在邏輯思維過程中,要用到比較、分析、綜合、抽象、概括等思維方法和概念、判斷、推理等思維形式。培養(yǎng)小學(xué)生初步的邏輯思維能力,就是要使他們能夠初步掌握和運用這些思維方法和思維形式。
一、比較
比較是借以認(rèn)出對象和現(xiàn)象異同的一種邏輯方法。在小學(xué)教材中有很多數(shù)學(xué)概念不僅聯(lián)系緊密,而且相似易混淆。如擴(kuò)大與增加;擴(kuò)大幾倍與擴(kuò)大到幾倍;質(zhì)數(shù)、質(zhì)因數(shù)與互質(zhì)數(shù);表面積與側(cè)面積等。都可充分運用比較這一思維方法,使小學(xué)生正確的辨認(rèn)它們之間的相同點與不同點,找出它們之間的聯(lián)系與區(qū)別,確定它們之間的關(guān)系,建立起確切的科學(xué)概念。
教師可根據(jù)教材內(nèi)容的特點,精心設(shè)計多種形式的比較。如,新舊對比,近似對比、互逆對比、正誤對比等。這不僅降低學(xué)生的學(xué)習(xí)難度,還訓(xùn)練學(xué)生的比較思維。
二、分析和綜合
分析是把一個對象或現(xiàn)象分解成若干部分或若干屬性的思維方法;綜合是把一對象或現(xiàn)象的各個部分結(jié)合為一個整體的思維方法。在思維過程中,分析和綜合往往是不可分割地進(jìn)行著。在教學(xué)中,教師要把功夫用在引導(dǎo)小學(xué)生把一些復(fù)雜的概念和問題分成幾個組成部分,根據(jù)小學(xué)生已有的知識基礎(chǔ),將各部分按照事物發(fā)展的邏輯順序進(jìn)行排列,啟發(fā)小學(xué)生由淺入深,由表及里地進(jìn)行分析,然后再一步步地綜合為整體,達(dá)到解決問題的目的。并在這個過程中啟發(fā)小學(xué)生逐步掌握“由整體到部分,由部分到整體”的解決問題的思維方法。如小學(xué)生在解答應(yīng)用題時,需要進(jìn)行一系列的分析綜合的思維過程。一般第一步要了解題意,分清條件和問題,這需要初步分析能力。第二步在分析條件之間,條件與問題之間的邏輯關(guān)系。這需要復(fù)雜的分析綜合能力。為了解答應(yīng)用題,往往采取兩種思維途徑,一是從問題著手推向條件,“執(zhí)果索因”的分析法。一是從條件分析得出結(jié)果,叫推理法。第三步就是確定解答步驟選擇算法,這是在全面分析數(shù)量的關(guān)系的基礎(chǔ)上,逐步進(jìn)行綜合的結(jié)果。
三、抽象和概括
抽象就是抽取事物的本質(zhì)屬性,使它與其他屬性分開;概括就是把抽取出來的本質(zhì)屬性,推廣到同類事物中去。抽象和概括總是緊密地相聯(lián)系著的,數(shù)學(xué)中的任何一種概念和規(guī)律都是抽象概括的結(jié)果。
教師在培養(yǎng)小學(xué)生的抽象概括思維能力時要注意適當(dāng)?shù)剡\用直觀教學(xué),豐富小學(xué)生的感性認(rèn)識,當(dāng)小學(xué)生頭腦中形成清晰表象時,在及時引導(dǎo)小學(xué)生抽象出事物的本質(zhì)屬性并幫助小學(xué)生把生活語言轉(zhuǎn)化為數(shù)學(xué)語言,用簡練的精確的數(shù)學(xué)語言表達(dá)概括結(jié)果。如,在學(xué)完正方體、長方體、圓柱體的體積公式后,讓學(xué)生把這三者的體積公式抽象概括為V=s•h(底面積×高)。教師在教學(xué)中采取不同方式提高學(xué)生的抽象概括能力,使學(xué)生的知識遷移能力增強,利于對新知識的理解和掌握。
四、推理和判斷
判斷是對某個事物的性質(zhì),現(xiàn)象作出肯定或否定的思維形式。數(shù)學(xué)中的意義、法則、性質(zhì)等都是判斷的結(jié)論。在教學(xué)中,教師要在培養(yǎng)小學(xué)生運用概念進(jìn)行有根有據(jù)的判斷,應(yīng)結(jié)合數(shù)學(xué)知識的教學(xué),引導(dǎo)小學(xué)生通過自己的思維,正確表達(dá)判斷的結(jié)論。
推理是由一個或幾個已知判斷,推出新判斷的思維形式。推理有歸納、演繹、類比三種。歸納是由個別到一般的推理。小學(xué)數(shù)學(xué)中不少概念、法則、公式都是這樣形成的。在講述知識時要注意培養(yǎng)小學(xué)生歸納推理能力。演繹推理是由一般到特殊的推理。它的基本形式是三段論。在教學(xué)中,教師一定要注意引導(dǎo)小學(xué)生運用因果關(guān)系進(jìn)行邏輯推理,滲透三段論形式。類比推理是從個別到個別的推理,是一種運用某種聯(lián)系進(jìn)行猜想。其結(jié)論不一定正確,因而要通過其他方法檢驗證明。盡管如此,它仍然有調(diào)動思維,啟迪小學(xué)生依據(jù)舊知識探求新知識的作用。
(一)前提或者命題真。這種真是指命題的思想內(nèi)容是真的。任何一個命題的內(nèi)容不是真的就是假的,在這里真或假不是用以描述事物狀態(tài)的,而是評價命題或陳述的內(nèi)容的。它的核心是針對其所表達(dá)的知識或信念的,例如:“臺灣不是一個國家?!边@個命題的內(nèi)容是符合客觀事實的,所以是個真命題。
(二)推理真。這是指推理中前提真和結(jié)論真之間的關(guān)系。演繹推理前提真結(jié)論必然真,歸納推理和類比推理前提真而結(jié)論是或然性真。因此推理真就是推理中的結(jié)論相對于前提是必然的真或者是或然的真。這里“真”指的是否再現(xiàn)邏輯推斷關(guān)系而不是對命題內(nèi)容的評價。
(三)指派真和賦值真。在邏輯學(xué)中(特別是在現(xiàn)代邏輯中)把命題形式當(dāng)作真值形式,而且只從真假的角度研究每一種命題形式的邏輯特征,真和假是命題的唯一屬性。邏輯真在這里指這些真值形式和其中的變項與公式的真假,這時的真假和具體命題內(nèi)容的真假無關(guān),而只是一種假定的真假和根據(jù)這種假定而推論出的真假。
(四)形式真。這是指永真式(重言式)或普遍有效式的真。邏輯學(xué)中有一類公式,對其中的變項可以代以任何命題、謂詞、個體詞總能得到真命題。這類公式的真是一種邏輯關(guān)系的真,例如:P或者非P中不管變項P賦真值或是假值,這個公式都是真的。
(五)系統(tǒng)真?,F(xiàn)代邏輯建立了形式系統(tǒng),如果它的定理都是形式真,即都是永真公式或是普遍有效式,那么整個系統(tǒng)便是可靠的和一致的,這種可靠性和一致性就是一種系統(tǒng)的真。
在以上這五種“真”的情況下,邏輯學(xué)不考慮第一種意義的“真”,而只關(guān)注后四種“真”。后四種“真”在邏輯學(xué)中有各種表現(xiàn),在其他科學(xué)中也有這些意義上的真的表現(xiàn),就被稱為邏輯真理。
所謂邏輯真理是一種特殊的真理,是一種因邏輯關(guān)系或邏輯原因而成為真的一種真理。邏輯真理不能憑經(jīng)驗而得知其為真,它需要我們借助邏輯分析、語義分析、關(guān)系分析確定它們是真的。它和我們?nèi)粘I钪兴f的真理是有區(qū)別的。
恩格斯認(rèn)為:全部哲學(xué)特別是近代哲學(xué)的重大基本問題,是思維與存在的關(guān)系問題。它包括兩個方面的問題,一方面是思維與存在何者為本原的問題;另一方面是思維和存在有無同一性的問題,也就是我們的思維能否認(rèn)識現(xiàn)實或者正確地反映現(xiàn)實世界的問題。從邏輯哲學(xué)的角度來看,其重大的基本問題就是邏輯與客觀現(xiàn)實的關(guān)系問題,任何邏輯學(xué)家都要回答:邏輯真理是否與客觀現(xiàn)實一致?邏輯真理與事實真理之間又有什么關(guān)系?
關(guān)于這個理論問題,亞里士多德在其所著《形而上學(xué)》一書中明確提出并詳細(xì)論述了邏輯基本規(guī)律(矛盾律與排中律)。在談到矛盾律時認(rèn)為,事物不能同時存在又不存在。矛盾律首先是存在的規(guī)律。它之所以能夠成為邏輯思維的基本規(guī)律,是因為它符合“事理”。亞里士多德肯定了邏輯規(guī)律與存在規(guī)律的一致性,其根據(jù)就是真理符合現(xiàn)實的理論,即所謂真理符合論。它在解釋真與假這對概念時說,凡以不是為是、是為不是者,這就是假的;凡以實為實、以假為假者這就是真的。按照真理符合論,一切真理必需與現(xiàn)實一致,邏輯真理也不能例外??梢妬喞锸慷嗟碌恼胬碛^,是唯物主義的一元論,這個真理論肯定了思維與存在的同一性。但是亞里士多德只強調(diào)邏輯真理與存在規(guī)律的一致性,卻忽視了邏輯真理的特殊性。萊布尼茲是現(xiàn)代邏輯的創(chuàng)始人。他第一個提出了用數(shù)學(xué)方法研究邏輯學(xué)中的推理問題,對亞里士多德的真理一元論提出了挑戰(zhàn)。他認(rèn)為有兩種真理:即推理的真理和事實的真理。推理的真理是必然的,事實的真理是偶然的。推理的真理不像事實真理那樣依賴于經(jīng)驗,它們的證明只能來自所謂的天賦的內(nèi)在原則。因此萊布尼茲的這種觀點,就成為真理二元論和邏輯真理先驗論的一個起源。
基于萊布尼茲的推理真理和事實真理的對立,在康德的哲學(xué)中就演變?yōu)榉治雠袛嗪途C合判斷的分歧??档抡J(rèn)為一切來源于經(jīng)驗的判斷都是綜合判斷;分析判斷是絕對獨立于一切經(jīng)驗的知識,即先天知識。例如:“白人是人”就是分析判斷,在康德看來表示邏輯規(guī)律的判斷就屬于分析判斷。
數(shù)理邏輯問世之后,邏輯哲學(xué)領(lǐng)域中出現(xiàn)了維特根斯坦學(xué)派,即以維也納小組為核心的邏輯實證主義者。他們的一個共同的工作就是利用數(shù)理邏輯的成果,發(fā)展從萊布尼茲到康德的真理二元論和邏輯真理的先驗論,使之獲得科學(xué)化的外觀和現(xiàn)代化的形式。維特根斯坦把邏輯真理稱為重言式。他認(rèn)為重言式的命題是無條件的真,由此他斷言,重言式既不能為經(jīng)驗所證實,同樣的也不能為經(jīng)驗所否定,也就是說與現(xiàn)實沒有任何描述關(guān)系。邏輯實證主義者進(jìn)一步把康德關(guān)于分析判斷和綜合判斷的區(qū)分推向極端。在他們看來,凡是先天的都是分析的;反之,凡分析的都是先天的。邏輯實證主義者確立了一個基本的哲學(xué)信條:分析真理與綜合真理有根本的區(qū)別。這個學(xué)派的主要代表卡爾納普認(rèn)為,哲學(xué)家們常常區(qū)分兩類真理,某些陳述的真理是邏輯的、必然的、根據(jù)意義而定的,另一些陳述的真理是經(jīng)驗的、偶然的、取決于世界上的事實的。前一類推理就是所謂的分析推理,后一類推理就是所謂的綜合推理。邏輯真理被看作是分析真理的一個特殊的真子集。
1933年塔爾斯基以形式化的方法給出了真理的語義學(xué)概念,他用非形式化方法對其語義學(xué)的成果作出概述。他認(rèn)為邏輯真理同其他真理一樣,必需與客觀現(xiàn)實相符合或者相一致,在形式語言中,一個語句是不是邏輯真理,取決于它是不是在每一種解釋下都成為真語句;同時一個語句在某一解釋下是否為真,取決于它在這一解釋下,是否與它所“談?wù)摰膶ο蟆毕嘁恢隆?梢娺壿嬚胬淼母拍钪苯右蕾囉谛问秸Z言中的語句,與它們所描述的客觀現(xiàn)實之間的符合關(guān)系,這說明它的邏輯真理或者分析真理并非先驗的真或者先天的真,它們?yōu)檎嫱瑯邮且驗樗鼈兣c現(xiàn)實相符合。塔爾斯基重新建立了真理符合論,表明一切真理包括事實真理和邏輯真理,它們的共同特征就是必需與客觀現(xiàn)實相符合。
綜上所述,我們可以看出亞里士多德提出的真理符合論,肯定了邏輯真理與存在規(guī)律的一致性,但是忽視了它們之間的差別。萊布尼茲、康德、維特根斯坦和邏輯實證主義者認(rèn)為,邏輯真理和現(xiàn)實絕對無關(guān),與事實真理根本不同。塔爾斯基主張真理必需以亞里士多德的真理符合論為基礎(chǔ),而且只能以形式語言來構(gòu)造,這種觀點有一定的局限性。
認(rèn)識論認(rèn)為,真理是客觀事物及其規(guī)律在人們思維中的正確反映。同樣邏輯真理也是客觀世界規(guī)律性的反映。列寧指出,人的實踐經(jīng)過千百萬次的重復(fù),它在人的意識中以邏輯的格固定下來,而最普遍的邏輯格,就是事物被描述的很幼稚的……最普遍的關(guān)系。列寧認(rèn)為邏輯的公理、正確的推理形式是事物最普遍的關(guān)系,是由人們實踐中千百萬次的重復(fù)而反映和鞏固在意識中。列寧說的最普遍的邏輯格是指三段論推理的正確形式。在這一點上我們說邏輯真和事實真是相容的,事實真是基礎(chǔ),邏輯真是建立在事實真基礎(chǔ)之上的,二者是一致的,但是邏輯真理與任何具體的經(jīng)驗事實無關(guān)。
第一,邏輯系統(tǒng)的公理和定理的真是邏輯系統(tǒng)設(shè)定,其為真的根據(jù)是某種初始的邏輯關(guān)系。第二,邏輯公理和定理經(jīng)過解釋的真命題,其為真不取決于解釋中的內(nèi)容,而取決于這些公理、定理所顯示的邏輯關(guān)系。第三,邏輯推斷關(guān)系這種推論的結(jié)論真是一種邏輯關(guān)系真。第四,根據(jù)邏輯聯(lián)系詞的性質(zhì),由邏輯真得到邏輯真。如:A、B是邏輯真命題,那么A并且B、如果A那么B都是邏輯真命題。第五,數(shù)學(xué)中的邏輯真命題,是建立在公理演繹基礎(chǔ)之上。以上這些邏輯真由于邏輯的原因或者邏輯關(guān)系而真,在這一點上我們可以說,在局部意義上,相對于特定的邏輯系統(tǒng)而言,邏輯真理可以說是分析的,是以邏輯意義為根據(jù)的,而與任何具體的經(jīng)驗事實無關(guān)。邏輯真理和事實真理的關(guān)系是:事物之間的關(guān)系顯示一定的邏輯關(guān)系,也是邏輯真的基礎(chǔ)。邏輯真理在某些方面與事實真理是一致的,但是在另一方面,邏輯真理又與事實真理不是一致的,邏輯真理和事實真理之間是一種交叉關(guān)系。邏輯真理既具有絕對性又具有相對性,有些邏輯關(guān)系是絕對的真,但是另一些邏輯真理是相對的真。邏輯真理之所以為邏輯真理,不是由于它們揭示了事物的本質(zhì)事物或事物的普遍性,而只是涉及到邏輯自身,只根據(jù)邏輯自身而成立。邏輯真理的必然性需要在邏輯自身中去尋找,而不能在現(xiàn)實中尋找。
綜上所述可見,邏輯真理來源于經(jīng)驗,但又不同于事實真理。由于邏輯思維的作用,它越遠(yuǎn)離事實,其真理性越強;當(dāng)它與具體事實相符合時,即成為事實真理的必要條件。當(dāng)邏輯真理和事實真理一致時,邏輯思維就正確地反映了事物的規(guī)律,因此邏輯真理在認(rèn)識中有著重要的作用。當(dāng)我們認(rèn)識世界時,會在原有的知識基礎(chǔ)上作出許多推測和猜想,也會試圖把這些思想與已經(jīng)獲得的關(guān)于被研究對象的材料聯(lián)系起來。為了搞好各項工作,我們要正確的調(diào)整各種思想關(guān)系,從中拋棄不適當(dāng)?shù)乃枷?,選取可以促進(jìn)我們前進(jìn)的思想,這就需要我們在思維過程中嚴(yán)格遵守邏輯規(guī)律和規(guī)則。只有認(rèn)識邏輯真理才能更好地認(rèn)識事實真理,隨著人類的經(jīng)驗積累,邏輯真理和事實真理的交叉容量必然會不斷增大,為了探求真理我們必須保證思維的邏輯性。
1.串聯(lián)情況:空間幾何體是立幾知識考查的載體,而直觀圖與三視圖是空間幾何體兩種不同的呈現(xiàn)形式,直觀圖便于觀察,三視圖便于度量.直觀圖與三視圖常整合面積與體積知識進(jìn)行考查,它們間的邏輯關(guān)系如下:三視圖?壙直觀圖空間幾何體的面積與體積.
2.考情分析:高考對直觀圖與三視圖的考查,主要集中在兩種題型:①已知直觀圖,求作三視圖;②已知三視圖,得出直觀圖,進(jìn)而求空間幾何體的面積或體積.
3.破解技巧:①若已知直觀圖,求作三視圖,只需將直觀圖“壓扁”到“墻角”的三個面中即可,但要注意哪些點、線重合了,哪些線被遮住了,遮住的部分需畫虛線;②若已知三視圖,要得出直觀圖,如果幾何體為錐體,那么只需將錐體的頂點從俯視圖中拉起還原就行,如果幾何體不是錐體,那么通常先找一個基本幾何體,然后將它削出來,我們通常稱之為“寄居法”,這個基本幾何體就是我們所研究幾何體“寄居”的殼.注意對得到的直觀圖,要“壓扁”還原檢驗,看看其三視圖是否符合要求.
4.經(jīng)典例題:
(1)將正三棱柱截去三個角(如圖1所示,A,B,C分別是GHI三邊的中點)得到幾何體如圖2,則該幾何體按圖2所示方向的側(cè)視圖(或稱左視圖)為()
(2)若幾何體的三視圖如圖3所示,則此幾何體的體積為________.
圖3
破解思路(1)本小題已知直觀圖,求作三視圖中的側(cè)視圖,因此,可以將幾何體從左向右“壓扁”,注意“壓扁”后各線的位置關(guān)系和虛實情況;(2)本小題的關(guān)鍵是得出直觀圖,由正視圖和左視圖易知幾何體不是錐體,又由俯視圖可知我們可以拿正方體作為我們要研究幾何體“寄居”的殼,再在正方體中將我們要研究的幾何體“削”出來.
經(jīng)典答案(1)解題時在圖2的右邊放堵墻(心中有墻),由于平面AED仍在平面HEDG上,故側(cè)視圖中仍然看到左側(cè)的一條垂直下邊線段的線段,可得答案A.
(2)如圖4,先找一個基本幾何體:正方體,然后按陰影部分所示平面“削”去上部分,剩下的部分幾何體就是所求,其體積為正方體的一半,即V=×4×4×4=32.
圖4
1.串聯(lián)情況:在空間特別是在空間直角坐標(biāo)系中引入空間向量,可以為解決空間圖形的形狀、大小、位置關(guān)系的幾何問題增加一種理想的代數(shù)工具,從而使得立體幾何問題的解決不斷趨向符號化、模型化、運算化和程序化,大大降低了解題難度.
2.考情分析:從近幾年立體幾何高考試題來看,立體幾何的傳統(tǒng)知識難點(求空間角與距離、開放性問題等)體現(xiàn)出了難度.空間向量的引入,有效地提高了解題的可操作性,從而提高了學(xué)習(xí)的效率.
3.破解技巧:使用空間向量對立體幾何問題進(jìn)行計算和證明,關(guān)鍵是幾何問題向量化的轉(zhuǎn)化過程.從建立空間直角坐標(biāo)系,到空間點的坐標(biāo)、具體向量的坐標(biāo),再到向量的有關(guān)運算,一直到得出結(jié)論,構(gòu)成了一個非常嚴(yán)密的解答(證明)過程,這也代表了立體幾何的一個發(fā)展趨勢.空間向量在立體幾何中的應(yīng)用技巧列舉如下:
(1)線線平行:若∥,則AB∥CD.
(2)線面平行:設(shè)n是平面α的法向量,若n,AB?埭α,則AB∥α.
(3)線線垂直:若,則ABCD.
(4)線面垂直:設(shè)n是平面α的法向量,若∥n,則ABα.
(5)面面垂直:設(shè)n1是平面α的法向量,n2是平面β的法向量,若n1n2,則αβ.
(6)線線所成角:設(shè)AB與CD所成角大小為θ,則cosθ=cos〈,〉.
(7)線面所成角:設(shè)AP與平面α所成角的大小為θ,若n是平面α的法向量,則sinθ=cos〈,n〉.
(8)面面所成角:設(shè)平面α與平面β所成角大小為θ,若n1,n2分別是平面α與平面β的法向量,則cosθ=±cos〈n1,n2〉(正負(fù)取值視實際情況而定).
(9)點面距離:設(shè)n是平面α的法向量,則點P到平面α的距離d=.
4.經(jīng)典例題:
如圖5,棱柱ABCD-A1B1C1D1的所有棱長都等于2,∠ABC=60°,平面AA1C1C平面ABCD,∠A1AC=60°.
(1)證明:BDAA1.
(2)求二面角D-A1A-C的平面角的余弦值.
(3)在直線CC1上是否存在點P,使BP∥平面DA1C1?若存在,求出點P的位置;若不存在,說明理由.
破解思路立體幾何中平行和垂直的證明(或判定),一方面可以利用平行和垂直的判定定理或性質(zhì)定理進(jìn)行推理論證;另一方面可以借助空間向量,用代數(shù)方法進(jìn)行精確論證.常用的平行和垂直的判定定理和性質(zhì)定理關(guān)系如下:
根據(jù)上述圖示,第3問可以利用線面平行判定定理,通過證明BP∥A1D就可以得出BP∥平面DA1C1;也可以利用面面平行的性質(zhì),通過證明面BMP∥面DA1C1就可以得出BP∥平面DA1C1.
根據(jù)上述圖示,第1問可以利用線面垂直的性質(zhì)定理,通過證明BD平面AA1O就可以得出BDAA1.同時,我們還可以發(fā)揮空間向量的工具性,第1問可以證明,第3問可以證明垂直于平面DA1C1的法向量即可.
立體幾何求角問題可以用(1)轉(zhuǎn)化法:作出二面角D-A1A-C的平面角,并解三角形;(2)向量法:設(shè)平面AA1C1C的法向量為n1,平面AA1D的法向量為n2,故二面角D-A1A-C的余弦值為cosθ=±cos〈n1,n2〉(正負(fù)取值視實際情況而定).
圖6
經(jīng)典答案(1)法1:過A1作A1OAC于點O,由于平面AA1C1C平面ABCD,由面面垂直的性質(zhì)定理知,A1O平面ABCD,又底面為菱形,所以ACBD,BDACBDA1OA1O∩AC=O?圯BD面AA1OAA1?奐面AA1O?圯BDAA1.
法2:設(shè)BD與AC交于O,則BDAC,連結(jié)A1O.
在AA1O中,AA1=2,AO=1,∠A1AO=60°,所以A1O2=AA+AO2-2AA1•AO•cos60°=3,所以AO2+A1O2=AA,所以A1OAO.
由于平面AA1C1C平面ABCD,所以A1O平面ABCD.
以O(shè)B,OC,OA1所在直線分別為x軸、y軸、z軸,建立如圖7所示的空間直角坐標(biāo)系,則A(0,-1,0),B(,0,0),C(0,1,0),D(-,0,0),A1(0,0,),C1(0,2,).
由于=(-2,0,0),=(0,1,),•=0,所以BDAA1.
(2)法1(轉(zhuǎn)化法):在AA1O中,A1A=2,∠A1AO=60°,所以AO=AA1•cos60°=1,所以O(shè)是AC的中點,由于底面ABCD為菱形,所以O(shè)也是BD中點.
由(1)可知DO平面AA1C,過O作OEAA1于E點,連結(jié)DE,則AA1DE,則∠DEO為二面角D-AA1-C的平面角.在菱形ABCD中,AB=2,∠ABC=60°,所以AC=AB=BC=2,又AO=1,所以DO==.
在RtAEO中,OE=OA•sin∠EAO=,DE===,所以cos∠DEO==,所以二面角D-AA-C的平面角的余弦值是.
法2(向量法):由于OB平面AA1C1C,所以平面AA1C1C的一個法向量為n1=(1,0,0).
設(shè)n2平面AA1D,則n2,n2.設(shè)n2=(x,y,z),則y+z=0,-x+y=0.
取n2=(1,,-1),所以cos〈n1,n2〉==,所以二面角D-A1A-C的平面角的余弦值為.
(3)法1:如圖8,存在這樣的點P,且滿足C1C=CP.
連結(jié)B1C,因為A1B1ABDC,所以四邊形A1B1CD為平行四邊形,所以A1D∥B1C.
在C1C的延長線上取點P,使C1C=CP,連結(jié)BP,因為BB1CC1,所以BB1CP,所以四邊形BB1CP為平行四邊形,則BP∥B1C,所以BP∥A1D,所以BP∥平面DA1C1.
法2:如圖8,存在這樣的點P,且滿足C1C=CP,連結(jié)AB1,延長A1A至M,使得A1A=AM,延長C1C至P,得使C1C=CP,連結(jié)MP,易知面A1C1D∥面B1AC且BM∥AB1,則BM∥面ACB1,同理,MP∥面ACB1,且MP∩BM=M,所以面BMP∥面ACB1,而BP?奐面BMP,所以PB∥面A1C1D.
法3:假設(shè)在直線CC1上存在點P,使BP∥平面DA1C1,設(shè)=λ,P(x,y,z),則(x,y-1,z)=λ(0,1,),從而有P(0,1+λ,λ),=(-,1+λ,λ).
設(shè)n3平面DA1C1,則n3,n3.又=(0,2,0),=(,0,).
設(shè)n3=(x3,y3,z3),則2y3=0,x3+z3=0,取n3=(1,0,-1).
因為BP∥平面DA1C1,則n3,即n3•=--λ=0,得λ=-1即點P在C1C的延長線上,且C1C=CP.
如圖9,在四棱錐E-ABCD中,底面ABCD為正方形,AE平面CDE,已知AE=DE=3,F(xiàn)為線段DE上的動點.
(1)若F為DE的中點,求證:BE∥平面ACF;
(2)求點A到平面BDE的距離;
(3)若二面角E-BC-F與二面角F-BC-D的大小相等,求DF長.
圖9
破解思路立體幾何距離問題可分為點面距離、線線距離、線面距離和面面距離,而線線距離、線面距離和面面距離往往可以轉(zhuǎn)化為點面距離,故點面距離是立體幾何中距離問題的核心與重點,求解策略有三種途徑.
方法一:定義法:作點A在面BDE上的射影H,則AH的長度就是點A到面BDE的距離.
方法二:等體積法:點A到面BDE的距離d=.
方法三:向量法:設(shè)n是平面BDE的法向量,則點A到平面BDE的距離d=.
經(jīng)典答案證明:(1)連結(jié)AC,BD交于O,連OF.
因為F為DE中點,O為BD中點,所以O(shè)F∥BE,OF?奐平面ACF,BE?埭平面ACF,所以BE∥平面ACF.
(2)法1:由題意易知,AD=3,BD=6,因為AE平面CDE且CD?奐平面CDE,所以AECD.
又AB∥CD,所以ABAE,所以BE==3.
在BDE中,BE2+DE2=6=BD2,所以DEBE,而AEDE且DE∩BE=E,所以DE面ABE,所以面ABE面BDE,所以過點A向面BDE引垂線,垂足H必在BE上,所以在RtABE中,AH===.
法2:設(shè)A到面BDE的距離為d,則d===.
法3:因為AE平面CDE,CD?奐平面CDE,所以AECD,因為CDAD,AE∩AD=A,AD,AE?奐平面DAE,所以CD平面DAE,如圖10建立坐標(biāo)系,則E(3,0,0),F(xiàn)(a,0,0),C(0,3,0),A(3,0,3),D(0,0,0).
由=得B(3,3,3),則=(3,3,3),=(3,0,0),=(0,0,-3),設(shè)面BDE的法向量為n=(x,y,z),則3x+3y+3z=0,3x=0,得x=0,令y=1,則z=-,所以n=(0,1,-),所以點A到面BDE的距離為d==.
(3)法1:如圖11,過E作EHAD于H,過H作MHBC于M,連結(jié)ME,同理過F作FGAD于G,過G作NGBC于N,連結(jié)NF.
因為AE平面CDE,CD?奐平面CDE,所以AECD.
因為CDAD,AE∩AD=A,AD,AE?奐平面DAE,所以CD平面DAE,EH?奐平面DAE,所以CDEH,CD∩AD=D,CD,AD?奐平面ABCD,EH平面ABCD,所以HEBC,所以BC平面MHE,所以∠HME為二面角E-BC-D的平面角,同理,∠GNF為二面角F-BC-D的平面角.
因為MH∥AB,所以MH=3,又HE=,所以tan∠HME=,而∠HME=2∠GNF,所以tan∠GNF=-2,所以=-2,GF=3-6.又GF∥HE,所以=,所以DF=6-12.
法2:設(shè)n1平面ABCD,且n1=(x,y,z),由n1•=0,n1•=0?圯y=0,x+z=0?圯n1=(1,0,-1).
設(shè)n2平面BCF,且n2=(x,y,z),由n2•=0,n2•=0?圯x+z=0,ax-3y=0?圯n2=(3,a,-3).
設(shè)n3平面BCE,且n3=(x,y,z),由n3•=0,n3•=0?圯x+z=0,x-y=0?圯n3=(,1,-).
設(shè)二面角E-BC-F的大小為α,二面角D-BC-F的大小為β,α=β,cos〈n1,n2〉=cos〈n3,n2〉,=?圯6=?圯a=-12±6,因為0
注:如坐標(biāo)系按如圖12所示建立,運算難度將會大大下降,請大家不妨去試一下.
圖12
1.串聯(lián)情況:高考數(shù)學(xué)命題注重知識的整體性和綜合性,重視知識的交叉滲透,常在知識網(wǎng)絡(luò)的交匯點處設(shè)計試題.軌跡問題以其新穎的姿態(tài)悄然走入了立體幾何,使得立體幾何與解析幾何有機(jī)地結(jié)合了起來,不僅能考查立體幾何點、線、面之間的位置關(guān)系,又能巧妙地考查求軌跡的基本方法.
2.考情分析:近幾年高考題多次出現(xiàn)以立體幾何為載體的軌跡問題,立意新穎,不落俗套,集知識的交匯性、綜合性,方法的靈活性,能力的遷移性于一體,極富思考性和挑戰(zhàn)性,主要考查基本概念的掌握程度、探索能力、創(chuàng)新能力以及靈活運用知識的能力.
3.破解技巧:解題的關(guān)鍵是基本概念要掌握得清晰、透徹,同時要結(jié)合解析幾何、立體幾何中圖形的特征.定性分析法和定量分析法是解決立體幾何、解析幾何問題的兩種最基本的思想方法,特別是定性分析法,在解決立體幾何中的軌跡問題時顯得尤為重要.具體方法主要有交軌法、利用解析幾何中曲線的定義、通過計算轉(zhuǎn)化平面軌跡等.
4.經(jīng)典例題:
(1)如圖13,面ABCα,D為AB的中點,AB=2,∠CDB=60°,P為α內(nèi)的動點,且P到直線CD的距離為,則∠APB的最大值為()
A.30° B.60°
C.90° D.120°
圖13
(2)如圖14,平面α平面β,α∩β=l,DA?奐α,BC?奐α,且DAl于A,BCl于B,AD=4,BC=8,AB=6,點P是平面β內(nèi)不在l上的一動點,記PD與平面β所成角為θ1,PC與平面β所成角為θ2,若θ1=θ2,則PAB的面積的最大值是__________.
破解思路(1)由P到直線CD的距離為知,點P在空間的軌跡為底面半徑為的圓柱面,又P為α內(nèi)的動點,所以點P的軌跡為平面α與圓柱面的交線,再從得到圖形中去求∠APB的最大值;
(2)由于AB的長度恒定,那么要求PAB面積的最大值,只需求PAB高的最大值,這就需要知道點P在面β內(nèi)的軌跡.
經(jīng)典答案(1)由P到直線CD的距離為知,點P在空間的軌跡為圓柱面,又P為α內(nèi)的動點,所以點P的軌跡為橢圓,在橢圓中,A,B為橢圓長軸的兩個頂點,當(dāng)點P為短軸頂點時,∠APB最大,最大值為.
(2)由題意易知,∠DPA=θ1,∠CPB=θ2,因為θ1=θ2,所以tanθ1=tanθ2,即=,所以BP=2AP,在平面β內(nèi),以AB所在直線為x軸,以AB的中垂線為y軸,建立平面直角坐標(biāo)系,則A(-3,0),B(3,0),P(x,y),所以=2,化簡得,(x+5)2+y2=16,所以點P在平面β內(nèi)的軌跡為半徑為4的半圓,所以PAB面積的最大值為•6•4=12.
1.串聯(lián)情況:立體幾何與函數(shù)的綜合,主要體現(xiàn)在將立體幾何中最值問題、取值范圍問題轉(zhuǎn)化為函數(shù)問題,充分利用函數(shù)性質(zhì)進(jìn)行解答,這往往需要同學(xué)們養(yǎng)成良好的函數(shù)解題思維習(xí)慣,主動構(gòu)造函數(shù).
2.考情分析:分析近幾年高考立體幾何試題,不難發(fā)現(xiàn),許多立體幾何最值問題、取值范圍問題,實質(zhì)考查轉(zhuǎn)化能力,將立體幾何問題轉(zhuǎn)化為函數(shù)問題,然后借助導(dǎo)數(shù)工具,達(dá)到解決問題的目的,其思維過程是“立體幾何問題?圮函數(shù)問題?圮導(dǎo)數(shù)問題”.
3.破解技巧:立體幾何與函數(shù)的綜合應(yīng)用問題突破口是函數(shù)思想的靈活運用,要能夠主動構(gòu)造函數(shù),借助導(dǎo)數(shù)等工具解答.
4.經(jīng)典例題:
已知直線l平面α,O為垂足,長方體ABCD-A1B1C1D1中,AD=5,AB=6,AA1=8,A∈l,B1∈α,則OC1的最大值為______.
破解思路該題屬于在運動背景下,探求某幾何量的最值問題,這類題的特點是背景新穎,幾何量間的關(guān)系較為復(fù)雜、隱蔽.
求OC1的最大值,關(guān)鍵在于建立OC1的函數(shù)表達(dá)式,進(jìn)而轉(zhuǎn)化為求函數(shù)最值問題.
在運動變化中,我們不難發(fā)現(xiàn),當(dāng)點A,O,B1,C1共面時,OC1才有可能取到最大值,此時,我們引入角參數(shù),在OB1C1中運用余弦定理,建立OC1的表達(dá)式.
經(jīng)典答案易知,當(dāng)點A,O,B1,C1共面時,OC1才有可能取到最大值,此時,設(shè)∠AB1O=θ,θ∈0,,則在OB1C1中,OB1=AB1•cosθ=10•cosθ,B1C1=5,∠OB1C1=+θ,由余弦定理得OC=OB+B1C-2OB1•B1C1•cos+θ,即OC=100cos2θ+25+100cosθ•sinθ=50sin2θ++75.
當(dāng)sin2θ+=1,即θ=時,OC1有最大值,最大值為OC1==5+5.
1.串聯(lián)情況:由平面到空間的類比推理題,不僅能將初中平面幾何知識與高中立體幾何內(nèi)容有機(jī)結(jié)合起來,而且能較好地考查我們的閱讀能力、類比推理能力、邏輯思維能力及實現(xiàn)知識的正遷移能力.
2.考情分析:從近幾年高考試卷來看,類比推理題作為課改的新增內(nèi)容,備受出題者的青睞,成為高考的熱點問題.據(jù)有關(guān)統(tǒng)計,高考類比推理試題的三分之二屬于平面到空間的類比推理題.
3.破解技巧:解類比推理題的關(guān)鍵要突破兩點:一方面是結(jié)論和公式特征上的類比,我們稱之為“形式類比”;另一方面要分析所給結(jié)論和公式的來歷及推導(dǎo)過程,從而引發(fā)所求新結(jié)論和新公式的推導(dǎo)過程,我們稱之為“實質(zhì)類比”.
4.經(jīng)典例題:
已知:ABC中,ADBC于D,三邊分別是a,b,c,則有a=c•cosB+b•cosC;類比上述結(jié)論,寫出下列條件下的結(jié)論:四面體P-ABC中,ABC,PAB,PBC,PCA的面積分別是S,S1,S2,S3,二面角P-AB-C,P-BC-A,P-AC-B的度數(shù)分別是α,β,γ,則S=________.?搖
破解思路解類比推理題,不僅要落實“形式”上的類比:
ABC中的邊長可與四面體P-ABC中的面積類比,ABC中腰與底邊的夾角可與四面體P-ABC中側(cè)面與底面的夾角類比等等,這些都是橫向的、形式的;
更要落實“實質(zhì)”上的類比:ABC中條件到結(jié)論的推導(dǎo)實質(zhì)上是底邊長等于兩腰在底邊上的投影長之和,把這個實質(zhì)類比到四面體P-ABC中有:
四面體P-ABC的底面面積等于各側(cè)面在底面的投影面積之和.
經(jīng)典答案S=S1cosα+S2cosβ+S3cosγ.
1.研究“兩綱一題一材”,即考綱、大綱與高考試題以及新教材,把握好復(fù)習(xí)的方向.
2.夯基礎(chǔ),抓落實,促規(guī)范:立體幾何的基本概念、公理、定理是基礎(chǔ);解題步驟要規(guī)范;注重通性通法,在日常學(xué)習(xí)中要將落實進(jìn)行到底.
關(guān)鍵詞類比分析微觀經(jīng)濟(jì)學(xué)需求曲線
一、引言
作為國家教育部指定的經(jīng)管類專業(yè)核心主干課程之一,經(jīng)濟(jì)學(xué)在全國各個專業(yè)財經(jīng)院校和非專業(yè)財經(jīng)院校的財經(jīng)類專業(yè)課中普遍開設(shè)。尤其是微觀經(jīng)濟(jì)學(xué),是大部分經(jīng)管類專業(yè)的學(xué)生接觸的第一門專業(yè)性學(xué)科,因其對微積分、線性代數(shù)及概率論與數(shù)理統(tǒng)計有一定的學(xué)科要求,加之其理論性較強、邏輯性較強的特性,使得相當(dāng)數(shù)量的學(xué)生對其產(chǎn)生愛橫交織的感覺。
二、類比分析在微觀經(jīng)濟(jì)學(xué)教學(xué)過程中的實踐
類比分析(analogical analysis)主要應(yīng)用在數(shù)學(xué)物理工程類的學(xué)科中,它通過兩個或兩類對象的比較,找到兩者在某些方面(特征、屬性和關(guān)系)的邏輯類似點,從而把其中一個對象的有關(guān)性質(zhì)移植到另一對象中去。因此,類比推理是從特殊到特殊的思維方法,其客觀依據(jù)是客觀事物的相似性。
相似性是客觀世界的一種普遍性,微觀經(jīng)濟(jì)學(xué)的知識體系也不例外。所以在實際的教學(xué)過程中,教師應(yīng)重點闡述知識體系之間的邏輯關(guān)系,尤其是具有類比性的知識體系。
(一)類比分析在“彈性”教學(xué)過程中的應(yīng)用
在講解“彈性”概念時,將經(jīng)濟(jì)學(xué)的彈性與物理意義的彈性比較。彈性的本意是一個物理學(xué)的概念,是指材料物體對外界力量的反應(yīng)程度,引出彈性的數(shù)學(xué)定義。則彈性大的含義是伸縮性強,體現(xiàn)在經(jīng)濟(jì)學(xué)中為“可有可無,無所謂”,則其代表為對于中低收入者的高檔消費品。
對需求的價格彈性的講授應(yīng)相對細(xì)致詳細(xì),這樣有助于學(xué)生把需求的價格彈性類比到對需求的收入彈性、需求的交叉彈性以及供給的價格彈性等學(xué)習(xí)中。
(二)類比分析在“d曲線與D曲線的關(guān)系”教學(xué)過程中的應(yīng)用
由于壟斷競爭廠商提供了有差別的且可替代的產(chǎn)品,所以,每個廠商面臨著兩條交叉的需求曲線。d需求曲線體現(xiàn)行業(yè)的壟斷性,產(chǎn)品的差別性,表示個別廠商單獨行為時所面對的需求狀況,即某個廠商改變產(chǎn)品價格,而其它廠商的產(chǎn)品價格均保持不變時該廠商的產(chǎn)品價格與銷售量之間的關(guān)系。d需求曲線是廠商的理想產(chǎn)量,其斜率較大,相對于橫軸平坦。D需求曲線體現(xiàn)行業(yè)的競爭性,產(chǎn)品的替代性,表示許多廠商共同行為時所面對的需求狀況,即集團(tuán)中的某個廠商改變產(chǎn)品價格,其它廠商也使價格發(fā)生相同變動時,該廠商的產(chǎn)品價格與銷量之間的關(guān)系。D需求曲線體現(xiàn)的是廠商的實際產(chǎn)量,其斜率較小,相對于橫軸陡峭。
d曲線與D曲線的關(guān)系主要有三點:(1)當(dāng)集團(tuán)中的所有廠商都以相同方式變動價格時,整個市場價格的變化會使得單個壟斷廠商的d需求曲線沿著D需求線上下平移。(2)d需求線與D需求線相交意味著壟斷競爭市場的供求相等狀態(tài)。(3)d需求線的彈性大于D需求線的彈性,即前者比后者更平坦一些。
d曲線與D曲線的三個關(guān)系可以類比于成年人尋找配偶進(jìn)行類比分析。第一,假設(shè)某位女青年小G希望自己找到一個理想的男朋友,對男朋友的要求可能有很多理想的條條框框,例如,“高富帥”。這種對異性朋友理想的需求狀態(tài)就類似于d曲線。隨著時間的流逝,小G發(fā)現(xiàn),現(xiàn)實生活中并沒有完美的異性朋友。因此,小G就只能調(diào)整自己的心理預(yù)期,同時這種調(diào)整也是圍繞著理想預(yù)期來進(jìn)行調(diào)整。這種對現(xiàn)實朋友的需求狀態(tài)就類似于D曲線。第二,當(dāng)理想與實際達(dá)到交點的時候,小G就很有可能與之成為戀人,感受到幸福,實現(xiàn)均衡。第三,在此過程中,可以發(fā)現(xiàn),小G對理想朋友的要求高很多,條件也偏多。因此,現(xiàn)實朋友更類似于生活必需品,理想朋友類似于奢侈品,其彈性當(dāng)然也比實際朋友的彈性大很多了。綜合來看,小G找朋友與d曲線、D曲線的類比關(guān)系參見表1。
因此,不難發(fā)現(xiàn),作為微觀經(jīng)濟(jì)學(xué)理論中的重難點之一,“壟斷競爭理論中的d曲線與D曲線”之間的三層關(guān)系是非常復(fù)雜的。作為三本院校的學(xué)生,理解這個知識點就更具有難度。但是采用這樣非常生動的類比分析,學(xué)生能夠很快地理解其含義,結(jié)合對完全競爭市場和完全壟斷市場的利潤最大化方法的五步驟,很快就能完全掌握壟斷競爭的短期均衡了。具體而言,第一步,根據(jù)MR=MC找到均衡Q*;第二步,根據(jù)Q*在d曲線上找到對應(yīng)的P*;第三步,根據(jù)Q*在AR曲線上找到對應(yīng)的TR;第四步,根據(jù)Q*在AC曲線上找到對應(yīng)的TC;第五步,根據(jù)π=TR-TC得到利潤最大化或虧損最小化的值,詳見圖1。
三、結(jié)論
綜合來看,雖然微觀經(jīng)濟(jì)學(xué)的學(xué)習(xí)對學(xué)生的邏輯思維能力要求較高,但如果教師在教學(xué)過程中,經(jīng)常進(jìn)行適當(dāng)?shù)念惐确治?,找到知識點與知識點之間的相似關(guān)系,例如消費者效用最大化的均衡條件與生產(chǎn)者利潤最大化條件的相似性;或者找到知識點與現(xiàn)實生活中消費者行為的相似點,都有助于提高學(xué)生的學(xué)習(xí)興趣,輔助學(xué)生深入淺出地理解并掌握經(jīng)濟(jì)學(xué)概念和原理,為其鋪墊好相關(guān)的專業(yè)基礎(chǔ)知識,將學(xué)習(xí)到的經(jīng)濟(jì)學(xué)理論學(xué)以致用,實現(xiàn)微觀經(jīng)濟(jì)學(xué)教學(xué)的預(yù)期目標(biāo)。
參考文獻(xiàn):
[1]宋宇任,保平. 微觀經(jīng)濟(jì)學(xué)精品式教學(xué)內(nèi)容創(chuàng)新中的幾個關(guān)系[J]. 中國大學(xué)教學(xué).2010(7)
第一,確定性。教師的口語信息從發(fā)出到接受必須是一致的,具有確定性。教師在語音上應(yīng)避免使用那些易發(fā)生歧義的同音字詞,特別是意義截然相反的同音詞。語匯上,首先是用詞的準(zhǔn)確與精確,在求證過程或評述同學(xué)的操作中,不出現(xiàn)表達(dá)猜測的副詞,像“可能”“大概”,而應(yīng)該明確“是”或“不是”。語法上則慎用無主句、省略句等特殊句式,盡量做到語法完整。
第二,邏輯性。數(shù)學(xué)的求證或解題過程是通過概念、判斷、推理、證明與反駁這些邏輯手段構(gòu)架的。因此,數(shù)學(xué)知識本身的邏輯性也決定了其教學(xué)口語呈現(xiàn)出以下特點:環(huán)環(huán)相扣的言語鏈。教師的口語呈現(xiàn)出一種“因為……所以……”“如果……那么……”等關(guān)聯(lián)詞連結(jié)起來的環(huán)環(huán)相扣的因果、假設(shè)、選擇等邏輯關(guān)系的言語鏈。另一方面,數(shù)學(xué)教師由于課堂中經(jīng)常要進(jìn)行解題演示,因此在他們的口語中應(yīng)該注意用序列化的詞語體現(xiàn)出求證程序先后,像“首先”“然后”“再次”“最后”……等詞匯,這種言語鏈顯示著教師假言判斷、選言判斷以及演繹推理、歸納推理、類比推理等思想的邏輯性和實證的條理性。而學(xué)生也正是從這些關(guān)聯(lián)詞所組成的復(fù)述句中觸摸到教師思維的脈絡(luò)的。
第三,簡潔性。知識的“序”即條理性,是邏輯性強的前提。而簡潔、明晰的口語又可以使其達(dá)到這種“有序”狀態(tài)。簡潔明晰的教師口語為學(xué)生接受時盡快地編碼提供了基礎(chǔ),為集中精力進(jìn)行邏輯思維減輕了負(fù)擔(dān),有助于學(xué)生的思維達(dá)到“有序”狀態(tài)。而這種“有序”正可以幫助學(xué)生理清認(rèn)識問題的思路。
第四,穩(wěn)定性。在口語表達(dá)過程當(dāng)中,教師的重音停頓等口語表達(dá)的技巧往往起著導(dǎo)向的作用。它們或強調(diào)、或暗示了教師的意圖,引起學(xué)生注意的確定性。因此,數(shù)學(xué)教師在口語中的重音、停頓、語速等表達(dá)方式必須是固定甚至是程式化,表述概念的、演繹求證過程時多用能顯示思維邏輯性的強調(diào)重音、強調(diào)停頓。
第五,啟發(fā)性。不管是形象思維還是邏輯思維,人們都是以語言材料為工具進(jìn)行的。外在的語言刺激則會對人固有的思維產(chǎn)生影響力,成為他們思維的動力和方向。根據(jù)心理學(xué)家的分析,疑問句式、設(shè)問句式對思維的作用力較大。因為疑問是創(chuàng)造的前提,邏輯思維的原動力,自問自答的設(shè)問既可以增強語言的邏輯力量,更重要的還在于它使得數(shù)學(xué)教師的講述性口語始終在問和答、疑和解的線索中進(jìn)行。這樣學(xué)生的認(rèn)識過程就是主動的、積極的。
下面以著名特級教師李烈《長方體面積練習(xí)課》片段為例,感受數(shù)學(xué)語言的魅力。師:現(xiàn)在我給你們新的條件,按照我給你們的條件,咱們來研究火柴盒。高是15毫米,寬是35毫米,長45毫米。聽我要求,先列出算式,然后計算時考慮一下思路,動作快的同學(xué)把結(jié)果算出來。
關(guān)鍵詞:假說—演繹法;孟德爾豌豆雜交實驗;科學(xué)方法
假說—演繹法是形成和構(gòu)造科學(xué)理論的一種重要思維方法。它的基本特點是:在科學(xué)研究過程中,研究者在觀察、實驗的基礎(chǔ)上,對所獲得的事實材料進(jìn)行加工制作,首先提出某種作為理論基本前提的假說來,然后以假說作為出發(fā)點,邏輯地演繹出可由經(jīng)驗檢驗的結(jié)論,構(gòu)成一個理論系統(tǒng)。用這個理論系統(tǒng)解釋和預(yù)見所研究的對象系統(tǒng)的各種現(xiàn)象,并用實驗來進(jìn)行檢驗和修正。圖1為假說—演繹推理的邏輯關(guān)系。
圖1假說—演繹推理的邏輯關(guān)系
近代科學(xué)到現(xiàn)代科學(xué),以“觀察(實驗)—歸納”為主的方法逐漸讓位給以假說—演繹為主的方法。假說—演繹法不僅僅是科學(xué)家進(jìn)行科學(xué)研究的方法,也是學(xué)生認(rèn)識客觀事物,形成客觀規(guī)律的重要的科學(xué)探究方法。假說—演繹法相對于觀察—歸納法對于培養(yǎng)學(xué)生大膽想象的創(chuàng)新能力、嚴(yán)密的邏輯推理能力都有很好的作用。
一、假說—演繹法在高中生物新課程中的要求及體現(xiàn)
在《普通高中生物課程標(biāo)準(zhǔn)(實驗)》的“課程設(shè)計思路”部分,闡述“遺傳與進(jìn)化”模塊的教學(xué)價值時指出,該模塊有助于學(xué)生領(lǐng)悟“假說演繹、建立模型等科學(xué)方法及其在科學(xué)研究中的應(yīng)用”。在新課標(biāo)中分為了解、理解、應(yīng)用三個水平要求,其中屬于應(yīng)用水平的僅有兩項,一項是“總結(jié)人類對遺傳物質(zhì)的探索過程”,另一項是“分析孟德爾遺傳實驗的科學(xué)方法”。在課程標(biāo)準(zhǔn)必修二模塊的前言部分,還特別指出要讓學(xué)生“體驗科學(xué)家探索生物生殖、遺傳和進(jìn)化奧秘的過程”,可見引導(dǎo)學(xué)生體驗科學(xué)的過程和方法,是必修二模塊的重要任務(wù)之一。
必修二教材中涉及假說—演繹方法的內(nèi)容還有:dna分子半保留復(fù)制方式的提出與證實(第52頁,沃森和克里克提出遺傳物質(zhì)自我復(fù)制的假說,1958年科學(xué)家以大腸桿菌為實驗材料,設(shè)計了一個巧妙的實驗,證實了dna是以半保留的方式復(fù)制的),整個中心法則的提出與證實(第68—第69頁)以及遺傳密碼的破譯(第73—第75頁)等內(nèi)容。這些內(nèi)容可以讓學(xué)生體會,領(lǐng)悟其中蘊含的方法。同時在教材中,編者也設(shè)計了類似的練習(xí)題對學(xué)生進(jìn)行訓(xùn)練。如教材第38頁拓展題“……你怎樣解釋這種奇怪的現(xiàn)象?如何驗證你的解釋”,及第71頁的技能訓(xùn)練——提出假說,得出結(jié)論“請針對出現(xiàn)殘翅果蠅的原因提出假說,進(jìn)行解釋”,必修三教材第69頁進(jìn)一步探究“根據(jù)你對影響酵母菌種群數(shù)量增長的因素作出的推測,設(shè)計實驗進(jìn)行驗證”等。
二、假說—演繹法的典型課例分析
孟德爾的豌豆雜交實驗是高中生物學(xué)教學(xué)的經(jīng)典內(nèi)容。遺傳因子分離導(dǎo)致性狀分離這一命題,是孟德爾通過豌豆的一對相對性狀的雜交實驗,運用假說—演繹法,歷經(jīng)“提出問題—構(gòu)建假說—驗證假說—獲得結(jié)論”建立起來的。因此,這一內(nèi)容非常適合作為培養(yǎng)學(xué)生科學(xué)探究能力的素材。構(gòu)建假說需要大膽設(shè)想,演繹推理需要縝密思維,驗證假設(shè)則需要設(shè)計實驗,尋求證據(jù),進(jìn)行論證。這一系列過程非常有利于訓(xùn)練學(xué)生的思維。下面以一對相對性狀的分離實驗為例(如圖2),看看孟德爾在進(jìn)行豌豆雜交實驗過程中,以及提出基因的分離定律的過程中,是怎樣體現(xiàn)假說—演繹法的。
本案例教學(xué)的難點,在于讓學(xué)生理解孟德爾研究過程中的哪個步驟是演繹。學(xué)生看到的是,孟德爾提出假說后,就設(shè)計測交實驗進(jìn)行檢驗了,那么哪一步是演繹呢?事實上,測交實驗所檢驗的不是假說本身,而是假說的推論。如果孟德爾要直接驗證他的假說,只能用顯微觀察的方法,確定遺傳因子的真實存在和遺傳因子的傳遞方式,顯然在當(dāng)時這是不可能的。只能由假設(shè)演繹出一個必然的可證明的待檢驗陳述,即子一代如果是雜合體,則必然會產(chǎn)生兩種數(shù)量相等的配子。那么如何最直觀、最簡單地證明這個推論呢?孟德爾非常巧妙地設(shè)計了測交方法,即將子一代與隱性親本類型回交,這是因為隱性親本性狀不能遮蓋顯性性狀,并能顯出純隱性性狀,這樣測交結(jié)果就能直接反映出子一代所產(chǎn)生的配子的類型和數(shù)目。如果測交結(jié)果能得到后代的性狀分離比例是1:1的話,就證明了推論的正確性。這應(yīng)該是孟德爾之所以采用測交試驗的真正目的。孟德爾所做的測交實驗結(jié)果與預(yù)期的結(jié)果完全相符,證明了推論的正確性,由此就得出被確證的結(jié)論,即分離定律。
三、在應(yīng)用假說—演繹法時需注意的問題
(一)給學(xué)生更多思考的時間和空間
活躍的思維是課堂教學(xué)成功的保證,在再現(xiàn)孟德爾實驗和思維的過程中,不僅有分析、推理、歸納、演繹,還有設(shè)計和想象等思維活動,教師要有足夠的耐心,提出問題或由學(xué)生提出問題后,再引導(dǎo)學(xué)生分析,因此給學(xué)生足夠的時間進(jìn)行思考和討論非常重要。
(二)引導(dǎo)學(xué)生進(jìn)行合理推理而非主觀臆斷
在演繹推理這一環(huán)節(jié)中最好以問題“為什么孟德爾不是用f1代自交或用f1代與純種高莖豌豆雜交來證明其假說,而是將f1代與矮莖豌豆進(jìn)行測交呢”來引導(dǎo)學(xué)生思考,而非主觀臆斷地告訴學(xué)生,孟德爾當(dāng)時就是這么想的,就是將f1代與純隱性類型雜交,至于為什么這樣做卻沒有進(jìn)行分析。這種教學(xué)的結(jié)果是使學(xué)生失去了思考的動力,不進(jìn)行分析和思考就被動接受,其后果是學(xué)生遇到檢驗?zāi)骋簧飩€體是否是雜種的實際問題時,只會想到測交而不會根據(jù)實際情況進(jìn)行分析判斷,這是一種失敗的教學(xué)。
四、假說—演繹法在科學(xué)發(fā)現(xiàn)中的應(yīng)用與限制
回顧經(jīng)典遺傳學(xué)的歷史就會發(fā)現(xiàn),人們對基因和性狀關(guān)系的認(rèn)識,首先是從性狀傳遞的規(guī)律變化提出合理的假說,然后再分析、演繹推理、實驗驗證,在“合理”和“不合理”的沖突中發(fā)現(xiàn)正確的結(jié)論。如孟德爾在不知道遺傳因子為何物、在細(xì)胞何處的情況下,選取豌豆若干對相對性狀進(jìn)行雜交實驗,對呈現(xiàn)的現(xiàn)象提出假說,合理演繹,實驗驗證,從而歸納得出兩個遺傳的基本規(guī)律?;诋?dāng)時的情況,孟德爾的假說是合理的,可以演繹地說明其他類似的現(xiàn)象。如果聯(lián)系到基因在染色體上的位置,就可以看出孟德爾假說的局限性,譬如孟德爾講的顆粒式遺傳、基因的獨立自由問題。如摩爾根和他的合作者就是在覺得孟德爾遺傳理論“不合理的”基礎(chǔ)上,通過大量的果蠅雜交實驗,發(fā)現(xiàn)連鎖和交換定律。
調(diào)查顯示。數(shù)學(xué)學(xué)得好的學(xué)生在其他科目也學(xué)得不錯,往往數(shù)學(xué)差的其他成績也不好,例外的約占10%-15%,因此有很大的正相關(guān)。高中數(shù)學(xué)后進(jìn)生是重中之重,數(shù)學(xué)后進(jìn)生將影響到整個教育成敗的問題。
數(shù)學(xué)教學(xué)對注意力水平提出了較高的要求,注意力分散勢必影響學(xué)習(xí)效果,導(dǎo)致學(xué)業(yè)不良。美國教育家布魯姆指出:“注意力穩(wěn)定性的作用比學(xué)習(xí)能力的作用更大?!眕47本文通過兩個教學(xué)案例從數(shù)學(xué)認(rèn)知結(jié)構(gòu)心理分析和注意力心理方面分析討論。
個案:何某;女生,反應(yīng)較慢,記憶力較差,學(xué)不懂就會情緒很低落,心理控制方面不夠,但學(xué)習(xí)態(tài)度較好。
一天,她來問問題。
生:老師,今天上課講的復(fù)合函數(shù)的單調(diào)性我還是不明白。
師:哪里不明白?能不能舉個具體的例子?
生:我都不太明白。
師:我們今天講了y=F[g(x)]這種類型的函數(shù)的單調(diào)性,首先對它進(jìn)行換元,令y=f(u),u=g(x)。根據(jù)定義,如果g(x)在定義域內(nèi),x1>x2有u2>u2,那么f(u)是單調(diào)遞增的,而在f(u)中,若u2>u1有y2>y1,那么f(u)也是單調(diào)遞增的。結(jié)合起來有,x2>x1=Y2>y1有定義可知y=f[g(x)]是單調(diào)遞增的函數(shù),其他情況同理可得出。我們上課時給出一個幫助記憶的表(“”表示遞增,“”表示遞減):
用這張表來判斷復(fù)合函數(shù)的單調(diào)性,明白嗎?
生:明白。
師:好,我們看一個例子,比如判斷函數(shù)y=2x2+1的單調(diào)性,y=2x2+1看成哪兩個函數(shù)復(fù)合而成的?
生:…
師:能不能看成y=2u,u=x2+1呢?
生:對。可以。
師:好。你看的u=x2+1單調(diào)性如何?
生:x大于0是遞增的,小于0是遞減的。
師:很好,那么y=2的單調(diào)性呢?
生:是遞增的。
師:那么把它們復(fù)合起來,y=2x2+1的單調(diào)性如何?請你對照這個表來分析。
生:(在老師指導(dǎo)下)
當(dāng)x>0時y=2x2+1是遞增的;當(dāng)x
師:對!很好?,F(xiàn)在你明白了嗎?
生:明白了。
幾天后教了對數(shù)函數(shù)的性質(zhì),她又來問問題了。
生:老師,這道題,求函數(shù)y=log2(x2-2X-8)的單調(diào)區(qū)間我不會做。
又一次講了這道題,可一個星期后進(jìn)行了數(shù)學(xué)單元測試,考了類似的求單調(diào)區(qū)間的問題,可這位同學(xué)又做錯了。我找到她,她不好意思地說:“老師,對不起,我忘了?!北砻嫔峡词怯洃浀膯栴},其實她還沒有把函數(shù)單調(diào)性內(nèi)化成自己的知識結(jié)構(gòu)。數(shù)學(xué)后進(jìn)生在把教材知識轉(zhuǎn)化為自己的認(rèn)知結(jié)構(gòu)過程中,會出現(xiàn)這樣那樣的問題。
“所謂數(shù)學(xué)認(rèn)知結(jié)構(gòu),就是學(xué)生頭腦里的數(shù)學(xué)知識按照自己的理解深度、廣度,結(jié)合著自己的感覺、知覺、記憶、思維、聯(lián)想等認(rèn)知特點,組成的一個具有內(nèi)部規(guī)律的整體結(jié)構(gòu)”。P52
一、數(shù)學(xué)后進(jìn)生認(rèn)知特點的心理分析
學(xué)生數(shù)學(xué)認(rèn)知特點的個別差異主要表現(xiàn)在以下幾方面
(1)數(shù)學(xué)感知、定向方面的問題。能否正確地解題往往取決于最初的感知或定向。后進(jìn)生感知模糊、粗枝大葉,常常漏掉重要信息,且感知缺乏耐心,常常淺嘗輒止,尤其是遇到新問題時,他們只看到一些孤立的、零散的、無關(guān)緊要的材料,“死盯著”一些具體數(shù)據(jù),而不太注意題目中具有基本數(shù)學(xué)意義的那些關(guān)系。
(2)數(shù)學(xué)概括能力方面的問題。前蘇聯(lián)心理學(xué)家克魯切茨基認(rèn)為:概括數(shù)學(xué)材料的能力體現(xiàn)在兩個方面:①能在特殊的和具體的事物中發(fā)現(xiàn)一般的和已知的東西;②能在孤立的和特殊的事物中發(fā)現(xiàn)一般的和未知的東西。P102后進(jìn)生很難擺脫問題的具體內(nèi)容,甚至離開了具體內(nèi)容就無法思考,他們每解一題,留下的印象常常只是題目中講的具體情節(jié),因此學(xué)會了題A,就只能解題A。
(3)數(shù)學(xué)推理能力方面的問題。數(shù)學(xué)推理能力是解答數(shù)學(xué)問題的一種重要能力。后進(jìn)生推理時常常顧此失彼,思路容易中斷,其類比推理困難。一般只是被動地模仿。
(4)聯(lián)想能力方面的問題。后進(jìn)生的聯(lián)想常常雜亂無章,聯(lián)想的內(nèi)容經(jīng)常與所解決的問題毫不相關(guān),即使在教師的指導(dǎo)下,也只能夠形成對某一問題的孤立的具體的聯(lián)想。
(5)思維轉(zhuǎn)換方面的問題。思維轉(zhuǎn)換是思維靈括性的一種具體表現(xiàn)。后進(jìn)生的思維具有刻板、固定的特點,他們難以從一種運算方法轉(zhuǎn)換到另一種運算方法,從一種思路轉(zhuǎn)向另一種思路。有關(guān)研究P104還表明,能力強的學(xué)生在一個方向上建立了聯(lián)結(jié)就很容易知道相反方向的聯(lián)結(jié),即在學(xué)會解正方向題的同時就能鰓逆向題而后進(jìn)生往往只能夠建立牢固的正向聯(lián)結(jié),正向聯(lián)結(jié)的建立又干擾他們的逆向聯(lián)結(jié),因此,他們需要經(jīng)過特殊的練習(xí)才能建立逆向聯(lián)結(jié)。
(6)數(shù)學(xué)記憶力方面的問題。數(shù)學(xué)記憶力是數(shù)學(xué)學(xué)習(xí)中的關(guān)鍵因素。后進(jìn)生記得快、忘得快?;蛴浀寐⑼每?,且記憶方法不當(dāng),多是機(jī)械記憶,死記硬背,通常記住的只是與今后解題并無多大關(guān)系的具體情境、具體內(nèi)容和具體數(shù)據(jù)。
在何某身上就具體表現(xiàn)以下幾點:概括能力較差,做完題目不會歸納出某一類題目的相同點,把函數(shù)y=2x2+1換成函數(shù)y=log2(x2-2x-8)求其函數(shù)的單調(diào)性,就不知道這是同一種題型;同時思維轉(zhuǎn)換不過來,知識不能產(chǎn)生遷移;數(shù)學(xué)推理能力
也不足,復(fù)合函數(shù)y=2x2+1與子函數(shù)u=2x2+1,y=2u內(nèi)在邏輯關(guān)系不能理解。
二、數(shù)學(xué)后進(jìn)生的成因
對數(shù)學(xué)后進(jìn)生進(jìn)行針對性的指導(dǎo),首先必須了解他們落后的原因。學(xué)生數(shù)學(xué)落后的原因主要存
(1)知識因素?;A(chǔ)知識薄弱、底子差、跟不上教學(xué)進(jìn)度是形成后進(jìn)生的普遍原因。鑒于數(shù)學(xué)學(xué)科較其他學(xué)科更抽象、更系統(tǒng)、更嚴(yán)密,因此學(xué)生一旦知識上出現(xiàn)漏洞,往往更容易造成惡性循環(huán),落伍為數(shù)學(xué)后進(jìn)生。
(2)認(rèn)知因素。有關(guān)調(diào)查P4表明,注意力差、記憶力差、理解能力低是后進(jìn)生的一個主要特點。由于后進(jìn)生認(rèn)知上有缺陷,倘若沒有個別輔導(dǎo)就很難跟上一般學(xué)生的學(xué)習(xí)進(jìn)度。造成數(shù)學(xué)認(rèn)知缺陷的原因有生理因素,也有教育和環(huán)境因素。生理因素可能導(dǎo)致智力低下;環(huán)境和教育因素則主要影響學(xué)生的非智力因素。
(3)非智力因素。非智力因素是影響學(xué)生學(xué)習(xí)的極重要因素。甚至有人認(rèn)為,從某種意義上說,它對學(xué)生學(xué)習(xí)的影響超過了智力因素。
在這個學(xué)生身上,由多種網(wǎng)素造成了現(xiàn)在的狀況,既有先天因素又有后天因素,首先,何某基礎(chǔ)比較薄弱,以前學(xué)的公式、定理多部分不會運用;心理素質(zhì)也跟不上,要么激進(jìn)想幾天就學(xué)好,要么自信不足幾天不聞不問。
影響學(xué)生學(xué)習(xí)的非智力因素主要有:①學(xué)習(xí)態(tài)度不端正;②學(xué)習(xí)習(xí)慣不良;③意志薄弱,怕苦怕累;④缺乏學(xué)習(xí)興趣;⑤沒有正確的學(xué)習(xí)方法等。
關(guān)鍵詞 :法律修辭方法 案件爭議點 甘露案 參照性案例
一、問題的引出
《最高人民法院公報案例》2012年第7期刊發(fā)了最高法院對甘露不服暨南大學(xué)開除學(xué)籍決定一案的再審判決書和判決摘要。該案雖非指導(dǎo)性案例,但作為最高法院審判委員會討論通過的、最高人民法院以公報方式公開的典型案例和參照性案例,對下級法院相似案件的審判仍具有事實上的先例約束力,對下級法院法律修辭的運用也具有相當(dāng)?shù)闹笇?dǎo)性和引導(dǎo)性。但該判決書在法律修辭方法的選擇上卻出現(xiàn)了一些問題,它脫離該案的法律爭議點并任意選擇法律修辭方法,為了滿足其“先入為主”的法律感,嚴(yán)重肢解該案的論辯前提可能構(gòu)成的體系性結(jié)構(gòu)。因此,分析甘露案再審判決書在法律修辭方法選擇上的問題,并指出未來案件說理或裁判書修辭選擇法律修辭方法可參照的規(guī)范性學(xué)說,對我國目前的法律修辭學(xué)而言具有重要的實踐指引和理論構(gòu)造意義。
法律修辭方法的選擇或發(fā)現(xiàn)屬于修辭五藝中的開題(inventio),即修辭中的“覓材取材”或“修辭發(fā)明”。西塞羅曾經(jīng)對之做過這樣的解釋:“所謂開題就是去發(fā)現(xiàn)那些有效的或者似乎有效的論證,以便使一個人的理由變得比較可信?!?〔1 〕為了實現(xiàn)開題,亞里士多德認(rèn)為,修辭者需要同時動用藝術(shù)性的手段和非藝術(shù)性的手段。前者可以細(xì)分為三種訴求:訴諸理性、訴諸情感、訴諸人品,而后者并不來自于修辭藝術(shù)本身,而是來自于修辭藝術(shù)之外,如法律條文、合同、證人證詞等。西塞羅認(rèn)為,在開題的過程中,修辭者需要依賴于自己的開題天分、鍥而不舍的開題態(tài)度以及修辭學(xué)總結(jié)的方法和技藝?!? 〕法律修辭方法的選擇屬于修辭開題中最關(guān)鍵的部分,它直接決定著法律修辭論證的如何展開和法律修辭的整體布局。法律修辭方法的選擇需要同時訴諸于個案爭議點的甄別和分析以及個案論辯前提體系的整理和構(gòu)造,其中前者屬于藝術(shù)性的手段,后者屬于非藝術(shù)性的手段。
二、從案件的爭議點出發(fā)
法律修辭意義上的論辯意味著圍繞著詞語和事實與他人或自己的爭議,這構(gòu)成了其兩種基本的爭議點:法律爭議點和事實爭議點?!? 〕法學(xué)的概念和命題必須以特殊的方式與所爭論問題保持聯(lián)系,只能從問題出發(fā)來加以理解,也只能被賦予與問題保持關(guān)聯(lián)的涵義。案件的爭議點具有相應(yīng)的論題學(xué)功能,能夠變成“修辭發(fā)明” 〔4 〕上的“尋找格式”(Suchformeln),能夠在一介論題學(xué)和二介論題學(xué)范圍內(nèi)指導(dǎo)如何尋找解釋問題的觀點,并能充當(dāng)進(jìn)入商談的可能性和客體以及其他更多的東西?!? 〕案件的法律爭議點對法律修辭方法的初步選擇具有根本性的決定意義。案件的法律爭議點可分為法律實體維度上權(quán)利和義務(wù)的分配性爭議(簡稱為權(quán)益性法律爭議點)和法律思維意義上所涉法律條文意義的解釋性爭議(簡稱為解釋性法律爭議點)。在法律修辭過程中,前者往往過渡或回溯到后者。根據(jù)西塞羅的觀點,解釋性法律爭議點可析分為:文字和意義關(guān)系爭議、法律之間的沖突爭議、文字歧義爭議、類比推理爭議和定義爭議?!? 〕根據(jù)法律修辭學(xué)與其他法律方法的適用性關(guān)系,法律爭議點不能徑直呈現(xiàn)為“法律與規(guī)范的目光往返”問題,它會遭遇法律解釋、法律發(fā)現(xiàn)、法律推理等對事實與詞語對應(yīng)關(guān)系的初步加工和處理。如果它們一經(jīng)適用便確定了法律詞語的核心語義或規(guī)范與事實的涵攝關(guān)系,則這些語義和涵攝關(guān)系可直接轉(zhuǎn)化為法律修辭論證的起點和前提,“修辭發(fā)明”就會告一段落,接著就該“修辭論證”出場了。如果它們沒有解決論辯雙方間的解釋性爭議點,反而因此導(dǎo)入或引入了更多的法律多義性、歧義性或模糊性,則“修辭發(fā)明”或“修辭論證”須將這些法律方法及其引致的解釋性爭議點作為進(jìn)一步的論辯主題,并進(jìn)而選擇相應(yīng)的法律修辭方法進(jìn)行論辯層面的解決。因此,只有從案件的法律爭議點出發(fā),才能框定法律修辭方法的初步選擇范圍,進(jìn)而為有效的案件說理指引一個明確的方向。
鑒于權(quán)益性法律爭議點和解釋性法律爭議點的分類和甘露案再審判決書旨在說服的核心法律聽眾對象(甘露為一方,暨南大學(xué)、廣州市天河區(qū)法院、廣州市中級法院和廣東省高級法院為另一方),甘露案再審判決的法律爭議點可作如下分析和整理。
(一)權(quán)益性法律爭議點:
1.甘露一方的權(quán)益性主張
甘露請求撤銷原審判決并撤銷開除學(xué)籍決定,責(zé)令暨南大學(xué)重新作出具體行政行為或直接將開除學(xué)籍決定變更為其他適當(dāng)?shù)奶幏?,同時賠償因訴訟多年而支出的交通住宿等直接支出的費用和因喪失學(xué)習(xí)機(jī)會造成的間接損失、精神賠償。
2.暨南大學(xué)等一方的權(quán)益性主張
a.暨南大學(xué)主張,給予甘露開除學(xué)籍處分。請求依法維持原審判決,并駁回甘露在原一、二審期間未曾提出的賠償請求。b.天河區(qū)法院主張,維持開除學(xué)籍決定。c.廣州中院主張,暨南大學(xué)認(rèn)為甘露違規(guī)行為屬情節(jié)嚴(yán)重,主要證據(jù)充分,甘露認(rèn)為其行為屬考試作弊的理由不成立,不予采納。暨南大學(xué)處理程序并未影響甘露行使法定權(quán)利,甘露認(rèn)為開除學(xué)籍決定程序違法的主張缺乏依據(jù),不予支持。駁回甘露上訴,維持原判。d.廣東省高院主張,駁回再審申請通知,駁回其再審申請。
3.雙方的權(quán)益性法律爭議點
通過總結(jié)雙方的權(quán)益性法律主張甘露案再審判決的權(quán)益性法律爭議點在于:甘露因其考試行為是否應(yīng)被開除學(xué)籍或給予其他類型的處分?即暨南大學(xué)的開除學(xué)籍決定是否侵害和造成了甘露的受教育權(quán)或其他權(quán)益損失?天河區(qū)法院的初審判決、廣州中級法院的上訴判決以及廣東省高級法院的再審駁回是否正確、適當(dāng)和合理?
(二)解釋性法律爭議點
1.甘露一方的解釋性主張
甘露解釋,其先后兩次提交的課程論文存在抄襲現(xiàn)象屬實。但所涉課程考試是以撰寫課程論文方式進(jìn)行的開卷考試,抄襲他人論文的行為違反了考試紀(jì)律,應(yīng)按違反考試紀(jì)律的規(guī)定給予處分。不過,這種抄襲行為并不屬于《普通高等學(xué)校學(xué)生管理規(guī)定》和《暨南大學(xué)學(xué)生管理暫行規(guī)定》所稱的“剽竊、抄襲他人研究成果”違紀(jì)行為。暨南大學(xué)依此給予開除學(xué)籍處分,犯了認(rèn)定事實不清、適用國家法律不當(dāng)、處分程序違法以及處分明顯偏重的錯誤。
2.暨南大學(xué)等一方的解釋性主張
a.暨南大學(xué)解釋,學(xué)期課程論文作為研究生修讀課程的考試形式之一,也是研究生學(xué)習(xí)期間研究成果的一部分。甘露連續(xù)兩次的抄襲行為已經(jīng)嚴(yán)重違反了《高等學(xué)校學(xué)生行為準(zhǔn)則》、《普通高等學(xué)校學(xué)生管理規(guī)定》以及《暨南大學(xué)學(xué)生管理暫行規(guī)定》,應(yīng)按照《暨南大學(xué)學(xué)生違紀(jì)處分實施細(xì)則》進(jìn)行處理。即使將其行為歸類為考試作弊行為,按照《普通高等學(xué)校學(xué)生管理規(guī)定》第54條第(4)項的規(guī)定:“由他人代替考試、替他人參加考試、組織作弊、使用通訊設(shè)備作弊及其他作弊行為嚴(yán)重的”,仍可給予甘露開除學(xué)籍處分。b.廣州中院解釋,甘露兩次抄襲他人論文作為自己考試論文的行為屬于抄襲他人研究成果,在任課老師指出其錯誤行為后,甘露再次抄襲他人論文,屬情節(jié)嚴(yán)重。甘露認(rèn)為其行為屬考試作弊的理由不成立,不予采納。
3.雙方的解釋性法律爭議點
通過總結(jié)和分析雙方的解釋性法律主張甘露案再審判決的解釋性法律爭議點在于:首先,甘露兩次抄襲他人論文的行為究竟屬于《普通高等學(xué)校學(xué)生管理規(guī)定》和《暨南大學(xué)學(xué)生管理暫行規(guī)定》所規(guī)定的“剽竊、抄襲他人研究成果”、“其他嚴(yán)重的作弊”或“違反考試紀(jì)律規(guī)定”中的哪一種?這三種法律規(guī)定是否同時適用于甘露的行為而發(fā)生法律競合?這屬于法律爭議點中的“法律之間的沖突爭議、文字歧義爭議和定義爭議”。其次,甘露先后兩次抄襲他人論文的行為是否屬于《普通高等學(xué)校學(xué)生管理規(guī)定》和《暨南大學(xué)學(xué)生管理暫行規(guī)定》中關(guān)于開除學(xué)籍規(guī)定所要求的“情節(jié)嚴(yán)重”,即暨南大學(xué)作出的開除學(xué)籍決定是否“明顯偏重”?這不僅涉及關(guān)于不確定法律概念“情節(jié)嚴(yán)重”的“文字爭議和定義爭議”,而且涉及對甘露行為如何進(jìn)行法律評價和價值判斷的爭議。最后,之所以會出現(xiàn)上述法律爭議點,系因雙方了采用了不同的法律解釋、法律推理方法以及不同的衡量標(biāo)準(zhǔn)和衡量方法。在法律解釋和法律推理方法上,甘露一方通過對《普通高等學(xué)校學(xué)生管理規(guī)定》和《暨南大學(xué)學(xué)生管理暫行規(guī)定》規(guī)定的“剽竊、抄襲他人研究成果”進(jìn)行限縮解釋或縮小解釋認(rèn)為,其行為雖是抄襲行為,但(通過文義解釋得出)僅系《普通高等學(xué)校學(xué)生管理規(guī)定》第16條規(guī)定的“違反考核紀(jì)律”,因此不屬于(通過反面推論得出)“剽竊、抄襲他人研究成果”。而暨南大學(xué)同樣采取文義解釋方法辯駁,學(xué)期課程論文作為研究生課程的一種考試形式,屬于研究生學(xué)習(xí)期間的研究成果,甘露的行為可涵攝入“剽竊、抄襲他人研究成果”這一規(guī)定。其進(jìn)而借助倫理解釋和類比推理認(rèn)為,即使甘露的行為屬于考試作弊行為,仍可由《普通高等學(xué)校學(xué)生管理規(guī)定》第54條第(4)項內(nèi)含的兜底條款“其他作弊行為嚴(yán)重的”包攝。廣州中院采用文義解釋認(rèn)為,該案中的課程形式可歸入考試范圍,甘露的行為屬于抄襲他人研究成果,并通過采用反面解釋方法指出,甘露的行為不屬于考試作弊行為。這些爭議構(gòu)成了解釋性法律爭議點中的法律方法爭議點。
在衡量基準(zhǔn)和衡量方法上,甘露以其受教育權(quán)為衡量基準(zhǔn)認(rèn)為自己的行為并非嚴(yán)重違反“考核紀(jì)律”或嚴(yán)重作弊的行為,僅是一般的考試違紀(jì)行為。而暨南大學(xué)以學(xué)術(shù)的嚴(yán)肅性為裁量基礎(chǔ)認(rèn)為,甘露連續(xù)兩次的抄襲行為是對相關(guān)規(guī)定的嚴(yán)重違反,喪失了作為一名學(xué)生所應(yīng)具有的道德品質(zhì),即使將其作為考試作弊行為處理,其也是一種嚴(yán)重的其他作弊行為。廣州中院同樣以學(xué)術(shù)的嚴(yán)肅性為衡量基準(zhǔn)認(rèn)為,甘露違規(guī)行為情節(jié)嚴(yán)重。
(三)法律修辭方法的選擇不得偏離法律爭議點
針對個案的法律論辯必須根據(jù)案件的法律爭議點選擇相關(guān)性的法律修辭方法。作為特定語境下的“運用性商談”和“法律辯證”法律修辭總以試圖影響、說服他人為出發(fā)點,它是面向法律聽眾的講演而非修辭者自己內(nèi)心的獨白。修辭學(xué)意義上的相關(guān)性強調(diào)論證內(nèi)容和修辭語境的語用關(guān)系,法律修辭者只能選擇有助于法律爭議點論辯的修辭方法和論辯技巧。〔7 〕甘露案再審判決書雖以近三分之二的篇幅論述了該案的法律爭議點,但僅是遵照我國裁判文書的格式化程式對法律爭議點粗糙的勾勒和描述,而并沒有規(guī)整和總結(jié)該案爭議點的性質(zhì)、類型和發(fā)生因由。最高法院再審判決書說理選擇的法律修辭方法對本案核心的法律爭議點而言并不具有充足的相關(guān)性。該案的再審判決不同于其初審判決,其不但需要解決甘露與暨南大學(xué)之間行政法上的權(quán)益性法律爭議,而且需要協(xié)調(diào)甘露一方和暨南大學(xué)等另一方之間的解釋性法律爭議。再審判決書也需要同時將之前裁判甘露案的歷屆法院和本次再審中的雙方當(dāng)事人作為說服對象。
通過上述法律爭議點的分析和整理,我們發(fā)現(xiàn),甘露案的再審判決需要處理的論辯主題為:(1)甘露的行為究竟屬于“剽竊、抄襲他人研究成果”、“其他嚴(yán)重的作弊”或“違反考試紀(jì)律規(guī)定”中的哪一種?(2)甘露的行為是否達(dá)到了開除學(xué)籍所要求的“情節(jié)嚴(yán)重”?(3)雙方解釋性主張背后所依據(jù)的文義解釋、倫理解釋、擴(kuò)大解釋、反面推論、類比推理以及衡量基準(zhǔn)和衡量方法哪一個更為正確、合理而被應(yīng)適用?
甘露案再審判決書為裁判說理選擇的主要法律修辭方法是對《普通高等學(xué)校學(xué)生管理規(guī)定》第54條第(5)項中的“剽竊、抄襲他人研究成果”和“情節(jié)嚴(yán)重”分別進(jìn)行“限縮解釋”或“縮小解釋”以及隨后進(jìn)行的補強論證或輔助論證,即指出“甘露作為在校研究生提交課程論文,屬于課程考核的一種形式,即使其中存在抄襲行為,也不屬于該項規(guī)定的情形”。但根據(jù)上述分析,我們發(fā)現(xiàn),該案法官選擇的法律修辭方法明顯偏離了其核心的法律爭議點:(1)即使甘露的行為在法律解釋構(gòu)造的語義界限上無法歸入“剽竊、抄襲他人研究成果”,但也不可排除其可由《普通高等學(xué)校學(xué)生管理規(guī)定》第54條第(4)項中的兜底條款“其他嚴(yán)重的作弊”涵括;(2)將甘露的行為解釋或論證為“課程考核行為”在法律競合關(guān)系上可反面推出也無法排除其可與上述兜底條款產(chǎn)生涵攝關(guān)系;(3)即使只能將甘露的行為歸類為課程考核行為,根據(jù)《普通高等學(xué)校學(xué)生管理規(guī)定》第12條、第16條、第52條、第53條的規(guī)定,若甘露的行為嚴(yán)重違反考核紀(jì)律,仍可被開除學(xué)籍;(4)對甘露行為違紀(jì)或作弊情節(jié)的判斷,最高法院并沒有像原、被告在解釋性法律主張中那樣采用利益衡量或價值判斷,而是通過將“情節(jié)嚴(yán)重”置換成經(jīng)驗性概念后徑直對之進(jìn)行了限縮解釋,作為說服對象的各方法律聽眾所分別認(rèn)同、運用的衡量方法、衡量基準(zhǔn)在再審判決書中都被一一忽略或省略了。
最高人民法院對甘露案的再審判決之所以陷入法律修辭方法選擇的任意困境,主要原因在于,該判決書并沒有從該案所涉的所有法律爭議點出發(fā)尋求能夠解決相關(guān)論辯主題的法律修辭方法,反而僅將本案涉及的權(quán)益性法律爭議點作為主要的論辯主題,企圖僅通過文義解釋方法完成其裁判說理的法律修辭學(xué)構(gòu)建。論辯雙方間的解釋性法律爭議點,尤其是法律方法爭議點并沒有透過甘露案再審判決書法律修辭方法的安排和選擇獲得相應(yīng)的反駁和回應(yīng)。法律修辭的商談程序和會話結(jié)構(gòu)要求,修辭者在建構(gòu)自己的法律論辯時,除了以法律理由證立自己的法律主張外,還應(yīng)反駁和回應(yīng)論辯相對人可能提出的反對性論據(jù)。法律論證的論證規(guī)則要求每一個論證如果受到挑戰(zhàn)必須由其他理性的論證給予支持。法律論證的真誠規(guī)則要求論辯的每一方都應(yīng)該被認(rèn)真對待,禁止在論辯中使用強力、欺詐以及針鋒相對的偏見。〔8 〕遺憾的是,甘露案的法律爭議點始終沒有對其法律修辭方法的選擇和構(gòu)造發(fā)揮相應(yīng)的指引和約束作用。
三、結(jié)合案件的論辯前提體系
法律修辭方法除了根據(jù)案件的法律爭議點進(jìn)行初步選擇外,還應(yīng)使其與個案中可能使用的論辯前提體系勾連起來,從而實現(xiàn)其最終的篩選和確定。佩雷爾曼指出,論辯者為了獲得聽眾對自己主張的認(rèn)同,需要使用法律共同體一般接受的觀點作為論辯前提,這些前提包括法律規(guī)則、一般法律原則以及特定法律共同體接受的原則。〔9 〕Wolfgang Gast認(rèn)為,在法律修辭中,不同類別和性質(zhì)的前提都在被使用,其中,法律概念是一種完全的前提,法教義學(xué)是一種特殊的操作性前提?!?0 〕法律概念、法律規(guī)范、法律原則、法律條文和法律條款作為“正式法律淵源”的表現(xiàn)形式或內(nèi)在組成部分,具有當(dāng)然的法律效力和聽眾不得任意挑戰(zhàn)的法律權(quán)威,可構(gòu)成法律修辭的客觀前提或完全的前提。法學(xué)原理、一般法理、法律學(xué)說以及部門法學(xué)說等作為有效法的教義性知識,具有根本的教義學(xué)屬性,能夠生產(chǎn)和提供關(guān)于法律和法律體系的相關(guān)信息,〔11 〕也屬于法律修辭主要的論辯前提。在法律論辯前提的分類上,它們屬于Wolfgang意義上特殊的操作性前提。在法律修辭中,這些論辯前提之間的體系關(guān)系和效力結(jié)構(gòu)在案件爭議點之外也會影響裁判書修辭具體修辭圖式或修辭方法的選擇。如果說,案件的爭議點是從其修辭語境或論辯情景的角度影響法律修辭方法的選擇,那么案件的論辯前提體系關(guān)系是從法教義學(xué)和法律方法論的立場進(jìn)一步確定法律修辭方法的選擇。兩者的協(xié)作和合力將實現(xiàn)案件法律修辭方法的最終確定。
如果修辭者與其聽眾沒有達(dá)成共同的論辯前提,則具體的論辯將是不可能的。論辯前提首先必須是聽眾能夠接受的、無異議的,同時,它的內(nèi)容及其產(chǎn)生的一切也必須是有效的。只有如此,論辯前提才能成為法律修辭中更大范圍內(nèi)可接受性的“源泉”?!?2 〕依據(jù)上述法律修辭之論辯前提的分類,甘露案再審判決所涉及的論辯前提可作如下分析和整理:
(一)甘露案再審判決涉及的論辯前提體系
甘露案再審判決涉及的各種形式論辯前提包括:
1.法律規(guī)則形式的論辯前提
a.《普通高等學(xué)校學(xué)生管理規(guī)定》第12條:考核分為考試和考查兩種??己撕统煽冊u定方式,以及考核不合格的課程是否重修或者補考,由學(xué)校規(guī)定。b.《普通高等學(xué)校學(xué)生管理規(guī)定》第16條:學(xué)生嚴(yán)重違反考核紀(jì)律或者作弊的,該課程考核成績記為無效,并由學(xué)校視其違紀(jì)或者作弊情節(jié),給予批評教育和相應(yīng)的紀(jì)律處分。給予警告、嚴(yán)重警告、記過及留校察看處分的,經(jīng)教育表現(xiàn)較好,在畢業(yè)前對該課程可以給予補考或者重修機(jī)會。c.《普通高等學(xué)校學(xué)生管理規(guī)定》第52條第1款:對有違法、違規(guī)、違紀(jì)行為的學(xué)生,學(xué)校應(yīng)當(dāng)給予批評教育或者紀(jì)律處分。d.《普通高等學(xué)校學(xué)生管理規(guī)定》第53條:紀(jì)律處分的種類分為:(一)警告;(二)嚴(yán)重警告;(三)記過;(四)留校察看;(五)開除學(xué)籍。e.《普通高等學(xué)校學(xué)生管理規(guī)定》第54條:學(xué)生有下列情形之一,學(xué)??梢越o予開除學(xué)籍處分:(四)由他人代替考試、替他人參加考試、組織作弊、使用通訊設(shè)備作弊及其他作弊行為嚴(yán)重的;(五)剽竊、抄襲他人研究成果,情節(jié)嚴(yán)重的;(七)屢次違反學(xué)校規(guī)定受到紀(jì)律處分,經(jīng)教育不改的。
同時,由于《暨南大學(xué)學(xué)生管理暫行規(guī)定》是完全依據(jù)《普通高等學(xué)校學(xué)生管理規(guī)定》制定的,且不違背《普通高等學(xué)校學(xué)生管理規(guī)定》相應(yīng)條文的主觀意思,因此,《暨南大學(xué)學(xué)生管理暫行規(guī)定》相應(yīng)的規(guī)定也構(gòu)成了甘露案法律規(guī)則形式的論辯前提。
2.法律原則形式的論辯前提
由于甘露案關(guān)涉到甘露的受教育權(quán)問題,因此,憲法關(guān)于國家尊重和保障公民人權(quán)和受教育權(quán)的相關(guān)條款理應(yīng)成為甘露案的論辯前提。根據(jù)阿列克西的觀點,憲法權(quán)利構(gòu)成了一種意味著最大化律令的法律原則。〔13 〕因此,憲法關(guān)于公民人權(quán)和受教育權(quán)的相關(guān)規(guī)定可構(gòu)成甘露案法律原則形式的論辯前提。甘露案再審判決原則形式的論辯前提包括:
a.《憲法》第33條第3款:國家尊重和保障人權(quán)。b.《憲法)第46條中華人民共和國公民有受教育的權(quán)利和義務(wù)。c.《普通高等學(xué)校學(xué)生管理規(guī)定》第5條:學(xué)生在校期間依法享有下列權(quán)利:(一)參加學(xué)校教育教學(xué)計劃安排的各項活動,使用學(xué)校提供的教育教學(xué)資源;(四)在思想品德、學(xué)業(yè)成績等方面獲得公正評價,完成學(xué)校規(guī)定學(xué)業(yè)后獲得相應(yīng)的學(xué)歷證書、學(xué)位證書;(五)對學(xué)校給予的處分或者處理有異議,向?qū)W校、教育行政部門提出申訴;對學(xué)校、教職員工侵犯其人身權(quán)、財產(chǎn)權(quán)等合法權(quán)益,提出申訴或者依法提起訴訟;(六)法律、法規(guī)規(guī)定的其他權(quán)利。d.《普通高等學(xué)校學(xué)生管理規(guī)定》第52條第2款:學(xué)校給予學(xué)生的紀(jì)律處分,應(yīng)當(dāng)與學(xué)生違法、違規(guī)、違紀(jì)行為的性質(zhì)和過錯的嚴(yán)重程度相適應(yīng)。e.《普通高等學(xué)校學(xué)生管理規(guī)定》第55條:學(xué)校對學(xué)生的處分,應(yīng)當(dāng)做到程序正當(dāng)、證據(jù)充分、依據(jù)明確、定性準(zhǔn)確、處分適當(dāng)。
3.法教義學(xué)形式的論辯前提
甘露案的再審判決不但涉及復(fù)雜的法律修辭、法律解釋等方法論問題,而且亦涉及基本的行政法教義學(xué)問題。甘露案再審判決教義學(xué)類別的論辯前提包括:
甘露案涉及大學(xué)自治與強制退學(xué)制度 〔14 〕以及大學(xué)自治與學(xué)生受教育權(quán)之間的平衡問題?!?5 〕由于甘露案作為一種行政訴訟涉及對“情節(jié)嚴(yán)重”的法律解釋和司法審查,因此,該案涉及行政法上不確定性法律概念的具體化、解釋及其司法審查 〔16 〕、判斷余地 〔17 〕以及一般性的行政自由裁量等問題,如合理性原則和比例原則對行政自由裁量的約束。〔18 〕
(二)各種論辯前提的定位及其體系性結(jié)構(gòu)
以上述《憲法》、《普通高等學(xué)校學(xué)生管理規(guī)定》和《暨南大學(xué)學(xué)生管理暫行規(guī)定》為文本載體的法律規(guī)則和法律原則及其包括的各種關(guān)鍵的法律概念,共同構(gòu)成了甘露案再審判決的客觀前提或完全的前提,而甘露案涉及的各種行政法教義學(xué)知識是甘露案再審判決特殊的操作性論辯前提。法律規(guī)則和法律原則因有典型的文本形式可直接作為論辯起點,根據(jù)兩者初顯性特征的差異,〔19 〕如果它們發(fā)生沖突,則應(yīng)按如下原則處理它們的關(guān)系:“窮盡法律規(guī)則,方得適用法律原則”、“若無更強理由,不適用法律原則?!?〔20 〕若兩者屬于同一論辯結(jié)論的支持性論據(jù)或反對性論據(jù),則兩者可作為互補的論辯前提被同時適用。甘露案涉及的行政法教義學(xué)屬于廣義的行政法范疇,它是以法學(xué)內(nèi)部組織的觀點對立法、法院判決等各種行政法素料的解釋和體系化,并且它能夠形成一套比法律條文更加細(xì)致、更具解釋性的法律學(xué)說和法學(xué)知識。它們能為行政法提供一個透明的結(jié)構(gòu),促進(jìn)它的精確性、融貫性,并使行政法在政治動態(tài)中保持自身的穩(wěn)定性和權(quán)威性。〔21 〕在甘露案的說理或論證過程中,案件的具體決定以及它的法律商談結(jié)構(gòu)、論辯前提的選擇在某種意義上都會受到上述行政法教義學(xué)的規(guī)范性影響?!?2 〕相較于法律規(guī)則和法律原則,法教義學(xué)具有更強的可爭論性和可辯駁性,并且實證法的狀態(tài)和立法水平也會影響到法教義學(xué)的一般性效力。因此,修辭者對法教義學(xué)作為論辯前提具有較強的選擇性和可操作空間。按照上述對各種論辯前提的分析和定位,這些論辯提前可以形成一種初步的體系性結(jié)構(gòu),但若真正形成裁判規(guī)則意義上的融貫性體系,它們還需要結(jié)合該案的法律爭議點和主要的論辯主題進(jìn)行更加細(xì)致的構(gòu)造和協(xié)調(diào):
1.若將甘露撰寫課程論文的行為定性為考核中的“考查”,因其作弊或違反考核紀(jì)律,則可給予相應(yīng)的紀(jì)律處分,而紀(jì)律處分的種類可包括開除學(xué)籍。因此,根據(jù)法律規(guī)則間的語義關(guān)系和邏輯結(jié)構(gòu),甘露仍可被開除學(xué)籍。但《憲法》和《普通高等學(xué)校學(xué)生管理規(guī)定》中的相關(guān)法律原則卻構(gòu)成了相反的或反對性的論辯前提。甘露的行為在語義上即使可構(gòu)成開除學(xué)籍的形式要件,但根據(jù)上述法律原則,其行為未必達(dá)到了開除學(xué)籍的實質(zhì)要件,懸疑的問題是如何對甘露的違紀(jì)或作弊情節(jié)進(jìn)行法律評價和價值判斷。上述論辯前提間沖突的衡量需要參照我國行政法教義學(xué)發(fā)展出的相應(yīng)法律學(xué)說和法學(xué)知識的接受和吸納狀態(tài)進(jìn)行。
2.若將甘露撰寫課程論文的行為定性為考核中的“考試”,則其被開除學(xué)籍可獲取多種平行的法律規(guī)則鏈條的支持:第一,因其“違反考核紀(jì)律或作弊”,可給予相應(yīng)的紀(jì)律處分,而紀(jì)律處分的種類又包括開除學(xué)籍。因此,甘露可被開除學(xué)籍;第二,因其“剽竊、抄襲他人研究成果,情節(jié)嚴(yán)重”,可被開除學(xué)籍處分;第三,由于甘露的行為與“他人代替考試、替他人參加考試、組織作弊、使用通訊設(shè)備作弊”行為具有相似性,因此屬于“其他作弊行為嚴(yán)重的”行為,可被開除學(xué)籍;第四,因甘露“屢次違反學(xué)校規(guī)定受到紀(jì)律處分,經(jīng)教育不改”,也可被開除學(xué)籍。將甘露的行為定性為考試與將其定性為考查具有相同的反對性論辯前提,而且法律規(guī)則和法律原則間沖突的衡量也需要參照我國目前的行政法教義學(xué)知識。
綜上所述,在是否“開除學(xué)籍”的論辯上,共有五種平行的法律規(guī)則鏈條構(gòu)成的論辯前提,而且每一種規(guī)則形式的論辯前提都面臨著相同的原則形式的論辯前提的挑戰(zhàn),同時不同的行政法教義學(xué)可供相應(yīng)的選擇性備用。因此,上述各種形式的論辯前提可形成內(nèi)在協(xié)調(diào)、融貫的論辯前提體系。
(三)肢解論辯前提體系的法律修辭方法選擇
甘露案的再審判決沒有根據(jù)上述的論辯前提體系選擇和安排相應(yīng)的法律修辭方法,反而通過肢解各種論辯前提之間的體系性關(guān)系而隨意選取了一種法律規(guī)則形式的論辯前提,并試圖借助限縮解釋來迎合其“前見”和法律感早已鎖定的裁判結(jié)論。〔23 〕最高人民法院的法官在該再審判決中通過不余遺力地對“剽竊、抄襲他人研究成果”和“情節(jié)嚴(yán)重”同時進(jìn)行縮小解釋來極力否認(rèn)甘露的行為屬于該項規(guī)定的情形,并透過將甘露提交論文的課程類型解釋成課程考核的“考查”對之進(jìn)行相應(yīng)的補充論證或輔助論證。但根據(jù)甘露案的論辯前提體系,甘露被開除學(xué)籍具有五種不同形式的規(guī)則類別的論辯前提,它們在邏輯關(guān)系上的平行性或并列性決定了對其中任一論辯前提的反駁并都不能否定其他前提進(jìn)入論辯的可能性。即使甘露的行為不屬于“剽竊、抄襲他人研究成果”或無法滿足其“情節(jié)嚴(yán)重”的要求,但仍有其他四種論辯前提為“開除學(xué)籍”的行政處罰提供法律規(guī)則上的理由。甘露案的再審法官雖然認(rèn)識到了甘露參加的課程可定性為“考查”的課程考核,但卻沒有認(rèn)識到違反考核紀(jì)律仍可被開除學(xué)籍。根據(jù)甘露案的論辯前提體系,最高人民法院的再審法官在法律修辭方法的選擇上合理的做法應(yīng)是:承認(rèn)五種規(guī)則鏈條作為論辯前提的可能性以及它們間的法律競合關(guān)系,但要認(rèn)真審視前述法律原則形式的論辯前提與這些法律規(guī)則的價值性沖突,然后選擇針對法律沖突的修辭規(guī)則以及其他法律修辭規(guī)則,如文義論辯規(guī)則、目的論辯規(guī)則和結(jié)果論辯規(guī)則 〔24 〕一一解決這些法律沖突和法律爭議點,而不可徑直選取一種規(guī)則形式的論辯前提,試圖僅透過文義解釋、目的解釋來敷衍和修飾其“先入為主”認(rèn)定的裁判結(jié)論。其他論辯前提的存在以及它們之間的體系性關(guān)系,決定了本案的法律修辭方法應(yīng)該有更大的選擇范圍和適用種類。