网站首页
教育杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
医学杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
经济杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
金融杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
管理杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
科技杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
工业杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
SCI杂志
中科院1区 中科院2区 中科院3区 中科院4区
全部期刊
公務(wù)員期刊網(wǎng) 精選范文 卷積神經(jīng)網(wǎng)絡(luò)綜述范文

卷積神經(jīng)網(wǎng)絡(luò)綜述精選(九篇)

前言:一篇好文章的誕生,需要你不斷地搜集資料、整理思路,本站小編為你收集了豐富的卷積神經(jīng)網(wǎng)絡(luò)綜述主題范文,僅供參考,歡迎閱讀并收藏。

卷積神經(jīng)網(wǎng)絡(luò)綜述

第1篇:卷積神經(jīng)網(wǎng)絡(luò)綜述范文

關(guān)鍵詞:人工智能 機器學(xué)習(xí) 機器人情感獲得 發(fā)展綜述

中圖分類號:TP18 文獻標(biāo)識碼:A 文章編號:1003-9082 (2017) 04-0234-01

引言

人類自從工業(yè)革命結(jié)束之后,就已然開始了對人工智能的探索,究其本質(zhì),實際上就是對人的思維進行模仿,以此代替人類工作。人工智能的探索最早可以追溯到圖靈時期,那時圖靈就希望未來的智能系統(tǒng)能夠像人一樣思考。在20世紀(jì)五十年代,人工智能被首次確定為一個新興的學(xué)科,并吸引了大批的學(xué)者投入到該領(lǐng)域的研究當(dāng)中。經(jīng)過長時間的探索和嘗試,人工智能的許多重要基本理論已經(jīng)形成,如模式識別、特征表示與推理、機器學(xué)習(xí)的相關(guān)理論和算法等等。進入二十一世紀(jì)以來,隨著深度學(xué)習(xí)與卷積神經(jīng)網(wǎng)絡(luò)的發(fā)展,人工智能再一次成為研究熱點。人工智能技術(shù)與基因過程、納米科學(xué)并列為二十一世紀(jì)的三大尖端技術(shù), 并且人工智能涉及的學(xué)科多,社會應(yīng)用廣泛,對其原理和本質(zhì)的理解也更為復(fù)雜。 一、人工智能的發(fā)展歷程

回顧人工智能的產(chǎn)生與發(fā)展過程 ,可以將其分為:初期形成階段,綜合發(fā)展階段和應(yīng)用階段。

1.初期形成階段

人工智能這一思想最早的提出是基于對人腦神經(jīng)元模型的抽象。其早期工作被認(rèn)為是由美國的神經(jīng)學(xué)家和控制論學(xué)者 Warren McCulloch與Walter Pitts共同完成的。在1951年,兩名普林斯頓大學(xué)的研究生制造出了第一臺人工神經(jīng)元計算機。而其真正作為一個新的概念被提出是在1956年舉行的達(dá)茅斯會議上。由麥卡錫提議并正式采用了“人工智能”(Artificial Intelligence)礱枋穌庖謊芯咳綰斡沒器來模擬人類智能的新興學(xué)科。1969年的國際人工智能聯(lián)合會議標(biāo)志著人工智能得到了國際的認(rèn)可。至此,人工智能這一概念初步形成,也逐漸吸引了從事數(shù)學(xué)、生物、計算機、神經(jīng)科學(xué)等相關(guān)學(xué)科的學(xué)者參與該領(lǐng)域的研究。

2.綜合發(fā)展階段

1.7 7年, 費根鮑姆在第五屆國際人工智能聯(lián)合會議上正式提出了“知識工程”這一概念。而后其對應(yīng)的專家系統(tǒng)得到發(fā)展,許多智能系統(tǒng)紛紛被推出,并應(yīng)用到了人類生活的方方面面。20世紀(jì)80年代以來,專家系統(tǒng)逐步向多技術(shù)、多方法的綜合集成與多學(xué)科、多領(lǐng)域的綜合應(yīng)用型發(fā)展。大型專家系統(tǒng)開發(fā)采用了多種人工智能語言、多種知識表示方法、多種推理機制和多種控制策略相結(jié)合的方式, 并開始運用各種專家系統(tǒng)外殼、專家系統(tǒng)開發(fā)工具和專家系統(tǒng)開發(fā)環(huán)境等等。在專家系統(tǒng)的發(fā)展過程中,人工智能得到了較為系統(tǒng)和全面的綜合發(fā)展,并能夠在一些具體的任務(wù)中接近甚至超過人類專家的水平。

3.應(yīng)用階段

進入二十一世紀(jì)以后,由于深度人工神經(jīng)網(wǎng)絡(luò)的提出,并在圖像分類與識別的任務(wù)上遠(yuǎn)遠(yuǎn)超過了傳統(tǒng)的方法,人工智能掀起了前所未有的。2006年,由加拿大多倫多大學(xué)的Geoffery Hinton及其學(xué)生在《Science》雜志上發(fā)表文章,其中首次提到了深度學(xué)習(xí)這一思想,實現(xiàn)對數(shù)據(jù)的分級表達(dá),降低了經(jīng)典神經(jīng)網(wǎng)絡(luò)的訓(xùn)練難度。并隨后提出了如深度卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network, CNN),以及區(qū)域卷積神經(jīng)網(wǎng)絡(luò)(Region-based Convolutional Neural Network, R-CNN),等等新的網(wǎng)絡(luò)訓(xùn)練結(jié)構(gòu),使得訓(xùn)練和測試的效率得到大幅提升,識別準(zhǔn)確率也顯著提高。

二、人工智能核心技術(shù)

人工智能由于其涉及的領(lǐng)域較多,內(nèi)容復(fù)雜,因此在不同的應(yīng)用場景涉及到許多核心技術(shù),這其中如專家系統(tǒng)、機器學(xué)習(xí)、模式識別、人工神經(jīng)網(wǎng)絡(luò)等是最重要也是發(fā)展較為完善的幾個核心技術(shù)。

1.專家系統(tǒng)

專家系統(tǒng)是一類具有專門知識和經(jīng)驗的計算機智能程序系統(tǒng),通過對人類專家的問題求解能力建模,采用人工智能中的知識表示和知識推理技術(shù)來模擬通常由專家才能解決的復(fù)雜問題,達(dá)到具有與專家同等解決問題能力的水平。對專家系統(tǒng)的研究,是人工智能中開展得較為全面、系統(tǒng)且已經(jīng)取得廣泛應(yīng)用的技術(shù)。許多成熟而先進的專家系統(tǒng)已經(jīng)被應(yīng)用在如醫(yī)療診斷、地質(zhì)勘測、文化教育等方面。

2.機器學(xué)習(xí)

機器學(xué)習(xí)是一個讓計算機在非精確編程下進行活動的科學(xué),也就是機器自己獲取知識。起初,機器學(xué)習(xí)被大量應(yīng)用在圖像識別等學(xué)習(xí)任務(wù)中,后來,機器學(xué)習(xí)不再限于識別字符、圖像中的某個目標(biāo),而是將其應(yīng)用到機器人、基因數(shù)據(jù)的分析甚至是金融市場的預(yù)測中。在機器學(xué)習(xí)的發(fā)展過程中,先后誕生了如凸優(yōu)化、核方法、支持向量機、Boosting算法等等一系列經(jīng)典的機器學(xué)習(xí)方法和理論。機器學(xué)習(xí)也是人工智能研究中最為重要的核心方向。

3.模式識別

模式識別是研究如何使機器具有感知能力 ,主要研究圖像和語音等的識別。其經(jīng)典算法包括如k-means,主成分分析(PCA),貝葉斯分類器等等。在日常生活各方面以及軍事上都有廣大的用途。近年來迅速發(fā)展起來應(yīng)用模糊數(shù)學(xué)模式、人工神經(jīng)網(wǎng)絡(luò)模式的方法逐漸取代傳統(tǒng)的基于統(tǒng)計學(xué)習(xí)的識別方法。圖形識別方面例如識別各種印刷體和某些手寫體文字,識別指紋、癌細(xì)胞等技術(shù)已經(jīng)進入實際應(yīng)用。語音識別主要研究各種語音信號的分類,和自然語言理解等等。模式識別技術(shù)是人工智能的一大應(yīng)用領(lǐng)域,其非常熱門的如人臉識別、手勢識別等等對人們的生活有著十分直接的影響。

4.人工神經(jīng)網(wǎng)絡(luò)

人工神經(jīng)網(wǎng)絡(luò)是在研究人腦的結(jié)構(gòu)中得到啟發(fā), 試圖用大量的處理單元模仿人腦神經(jīng)系統(tǒng)工程結(jié)構(gòu)和工作機理。而近年來發(fā)展的深度卷積神經(jīng)網(wǎng)絡(luò)(Convolutional neural networks, CNNs)具有更復(fù)雜的網(wǎng)絡(luò)結(jié)構(gòu),與經(jīng)典的機器學(xué)習(xí)算法相比在大數(shù)據(jù)的訓(xùn)練下有著更強的特征學(xué)習(xí)和表達(dá)能力。含有多個隱含層的神經(jīng)網(wǎng)絡(luò)能夠?qū)斎朐紨?shù)據(jù)有更抽象喝更本質(zhì)的表述,從而有利于解決特征可視化以及分類問題。另外,通過實現(xiàn)“逐層初始化”這一方法,實現(xiàn)對輸入數(shù)據(jù)的分級表達(dá),可以有效降低神經(jīng)網(wǎng)絡(luò)的訓(xùn)練難度。目前的神經(jīng)網(wǎng)絡(luò)在圖像識別任務(wù)中取得了十分明顯的進展,基于CNN的圖像識別技術(shù)也一直是學(xué)術(shù)界與工業(yè)界一致追捧的熱點。

三、機器人情感獲得

1.智能C器人現(xiàn)狀

目前智能機器人的研究還主要基于智能控制技術(shù),通過預(yù)先定義好的機器人行動規(guī)則,編程實現(xiàn)復(fù)雜的自動控制,完成機器人的移動過程。而人類進行動作、行為的學(xué)習(xí)主要是通過模仿及與環(huán)境的交互。從這個意義上說,目前智能機器人還不具有類腦的多模態(tài)感知及基于感知信息的類腦自主決策能力。在運動機制方面,目前幾乎所有的智能機器人都不具備類人的外周神經(jīng)系統(tǒng),其靈活性和自適應(yīng)性與人類運動系統(tǒng)還具有較大差距。

2.機器人情感獲得的可能性

人腦是在與外界永不停息的交互中,在高度發(fā)達(dá)的神經(jīng)系統(tǒng)的處理下獲得情感。智能機器人在不斷的機器學(xué)習(xí)和大數(shù)據(jù)處理中,中樞處理系統(tǒng)不斷地自我更新、升級,便具備了獲得情感的可能性及幾率。不斷地更新、升級的過程類似于生物的進化歷程,也就是說,智能機器人有充分的可能性獲得與人類同等豐富的情感世界。

3.機器人獲得情感的利弊

機器人獲得情感在理論可行的情況下,伴之而來的利弊則眾說紛紜。一方面,擁有豐富情感世界的機器人可以帶來更多人性化的服務(wù),人機合作也可進行地更加深入,可以為人類帶來更為逼真的體驗和享受。人類或可與智能機器人攜手共創(chuàng)一個和諧世界。但是另一方面,在機器人獲得情感時,機器人是否能徹底貫徹人類命令及協(xié)議的擔(dān)憂也迎面而來。

4.規(guī)避機器人情感獲得的風(fēng)險

規(guī)避智能機器人獲得情感的風(fēng)險應(yīng)預(yù)備強制措施。首先要設(shè)計完備的智能機器人情感協(xié)議,將威脅泯滅于未然。其次,應(yīng)控制智能機器人的能源獲得,以限制其自主活動的能力,杜絕其建立獨立體系的可能。最后,要掌控核心武器,必要時強行停止運行、回收、甚至銷毀智能機器人。

三、總結(jié)

本文梳理了人工智能的發(fā)展歷程與核心技術(shù),可以毋庸置疑地說,人工智能具有極其廣闊的應(yīng)用前景,但也伴隨著極大的風(fēng)險。回顧其發(fā)展歷程,我們有理由充分相信,在未來人工智能的技術(shù)會不斷完善,難題會被攻克。作為世界上最熱門的領(lǐng)域之一,在合理有效規(guī)避其風(fēng)險的同時,獲得情感的智能機器人會造福人類,并極大地幫助人們的社會生活。

參考文獻

[1]韓曄彤.人工智能技術(shù)發(fā)展及應(yīng)用研究綜述[J].電子制作,2016,(12):95.

[2]曾毅,劉成林,譚鐵牛.類腦智能研究的回顧與展望[J].計算機學(xué)報,2016,(01):212-222.

[3]張越.人工智能綜述:讓機器像人類一樣思考

第2篇:卷積神經(jīng)網(wǎng)絡(luò)綜述范文

關(guān)鍵詞:車牌;識別;專利;分析

引言

車牌識別技術(shù)[1-2]是指自動提取受監(jiān)控區(qū)域車輛的車牌信息并進行處理的技術(shù),其通過運用圖像處理、計算機視覺、模式識別等技術(shù),對攝像頭捕獲的車輛照片或視頻進行分析,進而自動識別車輛的車牌號碼。車牌識別技術(shù)可應(yīng)用于停車場自動收費管理、道路監(jiān)控等領(lǐng)域,在城市交通管理中發(fā)揮了重要作用。

1 中國專利申請情況分析

以CNABS專利數(shù)據(jù)庫中的檢索結(jié)果為分析樣本,介紹車牌識別技術(shù)的中國專利申請量趨勢以及重要申請人的狀況。

1.1 第一階段(2005年及之前)

在這階段,申請量極少且申請人也極少,且針對的環(huán)境較為簡單,處于技術(shù)的萌芽階段,其中,專利CN1529276,通過車牌定位、字符分割和分類識別完成機動車牌號自動識別,其實現(xiàn)過程較為簡單,具體細(xì)節(jié)描述較少。

1.2 第二階段(2006年-2010年)

在這階段的申請量比上一階段有所增加,而且申請人數(shù)量相較之前也有增長,其中來自高校的申請量明顯增加,反映出了高校研究者開始更加注重對研究成果的保護,這一階段的專利所針對的環(huán)境場景更為復(fù)雜,識別準(zhǔn)確率得到提高,對車牌定位、字符分割、字符識別等關(guān)鍵技術(shù)的研究更為深入。

1.3 第三階段(2011年及以后)

在2011年之后車牌識別技術(shù)的專利申請量呈現(xiàn)快速增長,這一階段車牌識別技術(shù)得到了更進一步的豐富,涉及的關(guān)鍵技術(shù)的解決途徑也呈現(xiàn)出多樣性,檢測效率和精度也得到進一步提高,其中,專利CN104035954A,涉及一種基于Hadoop的套牌車識別方法,將云計算應(yīng)用于車牌識別,使得與傳統(tǒng)環(huán)境下不經(jīng)過優(yōu)化的方法相比具有^高的運行效率和加速比,可以有效地識別套牌車。

圖2示出了中國重要申請人分布情況,申請量分布前十的申請人包括:電子科技大學(xué)、深圳市捷順科技實業(yè)股份有限公司(捷順科技)、浙江宇視科技有限公司(宇視科技)、信幀電子技術(shù)(北京)有限公司(信幀電子)、中國科學(xué)院自動化研究所(自動化研究所)、安徽清新互聯(lián)信息科技有限公司(清新互聯(lián))、青島海信網(wǎng)絡(luò)科技股份有限公司(海信網(wǎng)絡(luò))、浙江工業(yè)大學(xué)、四川川大智勝軟件股份有限公司(川大智勝)、上海高德威智能交通系統(tǒng)有限公司(高德威智能交通),從圖2中可以看出,不同申請人的申請量差距不是很大,幾乎保持在一個比較持平的狀態(tài)。

電子科技大學(xué)在車牌識別技術(shù)的專利申請中,CN 101064011A提出一種基于小波變換的復(fù)雜背景中的車牌提取方法,可大大提高對晴天、雨天、霧天、白天及夜晚等環(huán)境的通用性和適用性,實現(xiàn)車牌的精確定位并提高車牌提取的準(zhǔn)確度;CN 103455815A提出一種復(fù)雜場景下的自適應(yīng)車牌字符分割方法,能快速、準(zhǔn)確地搜索2、3字符間隔位置,實現(xiàn)自適應(yīng)調(diào)整分割參數(shù),使車牌字符分割穩(wěn)定可靠,在復(fù)雜的環(huán)境中魯棒性強,防止噪聲干擾;CN 105005757A提出一種基于Grassmann流行的車牌字符識別方法,最大限度地利用了已獲得的車牌字符信息以及同類字符之間的相互關(guān)系,對于車牌字符的成像質(zhì)量要求更低,應(yīng)用于復(fù)雜的環(huán)境中具有很好的魯棒性和準(zhǔn)確性。

2 關(guān)鍵技術(shù)分析

一個完整的車牌定位與識別系統(tǒng),其前端包括圖像采集和傳輸系統(tǒng),末端還需要與數(shù)據(jù)庫相連接。從定位到識別的核心算法上,主要包括圖像預(yù)處理、車牌定位、字符分割和字符識別四大部分[3]。

圖像預(yù)處理,是指通過對攝像頭捕獲的彩色圖像進行預(yù)處理。常用的預(yù)處理方法包括圖像灰度化、圖像二值化、邊緣檢測等。

車牌定位,是指在經(jīng)預(yù)處理后的車輛圖像中,定位出車輛的車牌所在位置。常用的車牌定位方法包括基于紋理分析的方法、基于數(shù)學(xué)形態(tài)學(xué)的方法、基于邊緣檢測的方法、基于小波變換的方法和基于神經(jīng)網(wǎng)絡(luò)的方法等。CN 104298976A提出一種基于卷積神經(jīng)網(wǎng)絡(luò)的車牌檢測方法,利用卷積神經(jīng)網(wǎng)絡(luò)完整車牌識別模型對車牌粗選區(qū)域進行篩選,獲取車牌最終候選區(qū)域。

字符分割,是指將定位出的車牌區(qū)域圖像分割成單個的字符圖像。常用的字符分割方法包括基于輪廓的方法、基于投影的方法、基于模板匹配的方法和基于連通區(qū)域的方法等。CN 104408454A提出一種基于彈性模板匹配算法的車牌字符分割方法,基于彈性模板,通過插空進行模板序列形狀的彈性調(diào)整,將車牌圖片與理想模板進行匹配,獲得全局最優(yōu)匹配,確定字符位置,將分割算法作用于投影序列,實現(xiàn)對車牌字符的分割。

字符識別,是指對字符分割之后的單個字符圖像進行識別,進而得到車輛的車牌號碼。常用的車牌字符識別方法包括基于字符結(jié)構(gòu)特征的識別方法、基于模板匹配的識別方法、基于神經(jīng)網(wǎng)絡(luò)的識別方法、基于模糊理論的模式識別方法和基于支持向量機分類識別方法等。CN 105975968A提出一種基于Caffe框架的深度學(xué)習(xí)車牌字符識別方法,以基于Caffe架構(gòu)的深度學(xué)習(xí)為基礎(chǔ),解決了現(xiàn)有的車牌字符識別方法中對傾斜、斷裂、相近字符識別精度不高的問題,大大提高了對于車牌字符的識別精度。

3 結(jié)束語

本文以車牌識別相關(guān)專利文獻為樣本,分析統(tǒng)計了該技術(shù)中國專利申請現(xiàn)狀,并對車牌識別技術(shù)的關(guān)鍵技術(shù)進行簡單分析。在經(jīng)歷了從無到有、從萌芽到飛速發(fā)展的階段之后,車牌識別技術(shù)慢慢走向成熟,越來越多的企業(yè)和高校在車牌識別的研究上投入了大量的精力,也獲得了豐碩的研究成果。

參考文獻

[1]尹旭.汽車牌照定位研究綜述[J].電腦知識與技術(shù),2010,6(14):3729-3730.

第3篇:卷積神經(jīng)網(wǎng)絡(luò)綜述范文

關(guān)鍵詞:發(fā)展趨勢;研究應(yīng)用;人工智能

DOI:10.16640/ki.37-1222/t.2017.07.119

0 簡介

人工智能((Artificial Intelligence)),它是一門新的技術(shù)科學(xué),主要用于模擬、延伸以及擴展人類的智能的方法、理論、技術(shù)以及應(yīng)用系統(tǒng)。人工智能主要就是對人類的思維、意識的信息過程的合理化的模擬。人工智能它并不是人的智能,但是,它卻能像人那樣的思考,而且也可能會超過人類的智能??偟恼f來,人工智能研究的一個主要目標(biāo)是使機器能夠勝任一些復(fù)雜工作。

1 人工智能的運用現(xiàn)狀

目前,在很多方面人工智能有著運用,其中一個主要表現(xiàn)就是全球人工智能公司數(shù)量在急劇的增加,專家系統(tǒng)在目前來看是在人工智能各領(lǐng)域中最為活躍,且最為有成效的一個領(lǐng)域。它是一類基于知識的系統(tǒng),并可以解決那些一般僅有專家才能夠解決的復(fù)雜問題。我們這樣定義專家系統(tǒng):專家系統(tǒng)是一種具有特定領(lǐng)域內(nèi)大量知識與經(jīng)驗的程序系統(tǒng),它是基于程序系統(tǒng)依靠人工智能技術(shù),來模擬人類專家求解復(fù)雜問題的過程,大多情況下,專家系統(tǒng)的水平甚至可以超過人類專家。專家系統(tǒng)的基本結(jié)構(gòu)圖如下圖所示:

2 人工智能的影響

人工智能對經(jīng)濟的影響:人工智能的的確確會影響到社會、生活、文化的方方面面,特別是對于實體經(jīng)濟將來會有巨大的影響。以后,每個行業(yè)幾乎都會產(chǎn)生顛覆性的變化。在人工智能的研究上,中國并不落后,將來的中國一定可以從中獲得非常大的收益。一成功的專家系統(tǒng)可以為它的用戶帶來很明顯的經(jīng)濟效益。用比較經(jīng)濟的辦法執(zhí)行任務(wù)而不需要具有經(jīng)驗的專家,從而極大地減少開支。專家系統(tǒng)深入各行各業(yè),帶來巨大的宏觀效益,促進了IT網(wǎng)絡(luò)工業(yè)的發(fā)展。

人工智能對文化的影響:在人工智能原理的基礎(chǔ)上,人們通常情況下會應(yīng)用人工智能的概念來描述他們的日常狀態(tài)和求解問題的過程。人工智能可以擴大人們知識交流的概念集合,描述我們所見所聞的方法以及描述我們信念的新方法;人工智能技術(shù)為人類的文化生活提供了巨大的便利。如圖像處理技術(shù)必將會對圖形藝術(shù)和社會教育部門等產(chǎn)生深遠(yuǎn)影響。比如現(xiàn)有的智力游戲機將會發(fā)展成具有更高智能的一種文化娛樂手段。隨著技術(shù)的進步,這種影響會越來越明顯地表現(xiàn)出來。當(dāng)然,還有一些影響可能是我們目前難以預(yù)測的。但可以肯定,人工智能將對人類的物質(zhì)文明以及精神文明產(chǎn)生更大的影響。

人工智能對社會的的影響:一方面,AI為人類文化生活提供了一種新的模式?,F(xiàn)有的游戲?qū)⒅鸩桨l(fā)展為更高智能的交互式文化娛樂手段,今天,游戲中的人工智能應(yīng)用已經(jīng)深入到各大游戲制造商的開發(fā)中。另一方面,人工智能能夠代替人類進行各種腦力勞動,所以,從某種意義上來講,這將會使一部分人失去發(fā)展的機遇,甚至可能失業(yè)。由于人工智能在科技以及工程中的應(yīng)用,一部分人可能會失去介入信息處理活動的機會,甚至不得已而改變自己的工作方式;人工智能還可能會威脅到人類的精神。一般人們覺得人類與機器的區(qū)別就是人類具有感知精神,但如果有一天,這些相信只有人才具有感知精神的人也開始相信機器能夠思維和創(chuàng)作,那他們就會感到失望,甚至于感到威脅。他們會擔(dān)心:有朝一日,智能機器的人工智能可能會超過人類的自然智能,從而使人類淪為智能機器的奴隸。

3 人工智能的發(fā)展趨勢

有機構(gòu)預(yù)測,2017年人工智能投資將同比增長300%以上,在技術(shù)上將會更迅猛發(fā)展,工控自動化商城的智能語音、智能圖像、自然語言以及深度學(xué)習(xí)等技術(shù)越來越成熟,就像空氣和水一樣將會逐步地滲透到我們的日常生活。行業(yè)專家關(guān)于2017年人工智能的發(fā)展方向主要有以下幾點:(1)機器學(xué)習(xí)目前正在被應(yīng)用在更復(fù)雜的任務(wù)以及更多領(lǐng)域中,且被更多的人作為挖掘數(shù)據(jù)的方式。無監(jiān)督的學(xué)習(xí)會取得更多進展,但也存在很大的挑戰(zhàn),故在這一方面離人類的能力還是差得很遠(yuǎn)的。計算機在理解和生成自然語言方面,預(yù)計最先會在聊天機器人和其他對話系統(tǒng)上落地。 (2)深度學(xué)習(xí)、其他的機器學(xué)習(xí)、人工智能技術(shù)的混用,是成熟技術(shù)的典型標(biāo)志。將深度學(xué)習(xí)應(yīng)用到醫(yī)療領(lǐng)域中(醫(yī)療圖像、臨床數(shù)據(jù)、基因組數(shù)據(jù)等),各種類型數(shù)據(jù)上的研究以及成果將會大大的增加。 (3)聊天機器人和自動駕駛汽車可能會取得較大的進展,預(yù)計更多人類基準(zhǔn)將會被打破,特別是那些基于視覺以及適合卷積神經(jīng)網(wǎng)絡(luò)的挑戰(zhàn)。而非視覺特征創(chuàng)建和時間感知方法將會變得更加頻繁、更加富有成果。

4 結(jié)論

人工智能是人類長久以來的夢想,同時也是一門富有挑戰(zhàn)性的學(xué)科。盡管人工智能帶來很多問題,但當(dāng)人類堅持把人工智能只用于造福人類,人工智能推動人類社會文明進步將毋庸置疑。就像所有的學(xué)科一樣,人工智能也會經(jīng)歷各種挫折,但只要我們有信心、 有毅力,人工智能終將成為現(xiàn)實,融入到我們生活的方方面面,為我們的生活帶來更大的改變。

參考文獻:

[1]朱祝武.人工智能發(fā)展綜述[J].中國西部科技,2011,10(17):8-10.

[2]肖斌.對人工智能發(fā)展新方向的思考[J].信息技術(shù),2009,37(12):166-169.

免责声明

本站为第三方开放式学习交流平台,所有内容均为用户上传,仅供参考,不代表本站立场。若内容不实请联系在线客服删除,服务时间:8:00~21:00。

AI写作,高效原创

在线指导,快速准确,满意为止

立即体验
文秘服务 AI帮写作 润色服务 论文发表