网站首页
教育杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
医学杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
经济杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
金融杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
管理杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
科技杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
工业杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
SCI杂志
中科院1区 中科院2区 中科院3区 中科院4区
全部期刊
公務(wù)員期刊網(wǎng) 論文中心 正文

新聞生產(chǎn)模式人工智能應(yīng)用分析

前言:想要寫出一篇引人入勝的文章?我們特意為您整理了新聞生產(chǎn)模式人工智能應(yīng)用分析范文,希望能給你帶來靈感和參考,敬請閱讀。

新聞生產(chǎn)模式人工智能應(yīng)用分析

摘要:人工智能作為一門新興的學(xué)科和技術(shù),對社會發(fā)展產(chǎn)生了深遠(yuǎn)影響,并在包含新聞媒體在內(nèi)的諸多領(lǐng)域有了重要應(yīng)用。本文從新聞寫作和內(nèi)容投放分發(fā)兩個(gè)方面介紹人工智能技術(shù)在新聞行業(yè)中的應(yīng)用。在新聞寫作方面,介紹WordSmith和Dreamwriter兩種機(jī)器寫作軟件,并分析人工智能可能帶來的變革和人機(jī)協(xié)作發(fā)展前景。在內(nèi)容投放分發(fā)方面,則概述推薦算法的分類和利弊,并以今日頭條為例,簡要分析其實(shí)際運(yùn)用。

關(guān)鍵詞:人工智能;新聞寫作;內(nèi)容投放分發(fā);應(yīng)用分析

人工智能的研究內(nèi)容涉及神經(jīng)科學(xué)、計(jì)算機(jī)、心理學(xué)及認(rèn)知科學(xué),主要模擬和拓展人類個(gè)體和群體智能。由于計(jì)算機(jī)軟硬件技術(shù)不斷提高,人工智能的理論研究和技術(shù)實(shí)踐都取得了顯著發(fā)展,并成功應(yīng)用于金融貿(mào)易、交通物流、新聞媒體等領(lǐng)域。人工智能技術(shù)與新聞業(yè)的融合,改變了傳統(tǒng)的信息生產(chǎn)流程和傳播方式,從內(nèi)容采集、新聞寫作、投放分發(fā)到效果反饋,每個(gè)階段都實(shí)現(xiàn)了新的創(chuàng)造和顛覆[1]。本文對人工智能技術(shù)在新聞寫作和內(nèi)容投放分發(fā)兩方面的應(yīng)用進(jìn)行一個(gè)綜合分析,并探討它在新媒體環(huán)境下給新聞生產(chǎn)模式帶來的變革。

一、新聞寫作:機(jī)器化

傳統(tǒng)媒體寫稿、編輯等工作都由人來完成,隨著信息技術(shù)的發(fā)展以及人們對信息需求量的攀升,基于傳統(tǒng)媒體的稿件編寫方式無法實(shí)時(shí)提供有效信息給用戶。因此,將智能化技術(shù)、大數(shù)據(jù)處理技術(shù)應(yīng)用于新聞稿件的自動編寫是媒體行業(yè)智能化升級的一個(gè)重要方向。

(一)機(jī)器人寫稿得到廣泛應(yīng)用最早的機(jī)器人寫稿軟件是2007年創(chuàng)立的美國公司AutomatedInsights開發(fā)的名叫WordSmith的軟件,該軟件為美聯(lián)社自動編寫過很多有關(guān)企業(yè)財(cái)務(wù)業(yè)績的新聞。此后,《紐約時(shí)報(bào)》《華盛頓郵報(bào)》《衛(wèi)報(bào)》等媒體也逐步將人工智能技術(shù)應(yīng)用到新聞采編的多個(gè)環(huán)節(jié)。在國內(nèi),騰訊財(cái)經(jīng)于2015年開發(fā)了一款自動寫作新聞軟件——騰訊寫作機(jī)器人(Dreamwriter)。據(jù)報(bào)道,Dreamwriter可以對信息內(nèi)容進(jìn)行自動處理和分析判斷,以最快的速度生成稿件,甚至可以在一分鐘之內(nèi)完成。2015年9月10日,Dreamwriter了第一篇題為“8月CPI漲2%創(chuàng)12個(gè)月新高”的稿件,內(nèi)容引用了中國國家統(tǒng)計(jì)局當(dāng)日的8月居民消費(fèi)價(jià)格指數(shù)數(shù)據(jù),并援引了包括國家統(tǒng)計(jì)局、銀河證券分析報(bào)告等多名分析師的觀點(diǎn),還穿插了中國降息的背景及CPI(居民消費(fèi)價(jià)格指數(shù))的含義。從行文上看,這樣的寫作方式與媒體記者日常的消息稿有較高的相似度。除此之外,今日頭條的Xiaomingbot、新華社的快筆小新等也被廣泛地應(yīng)用到各類媒體中。

(二)機(jī)器人寫稿能否代替人工寫稿機(jī)器人寫稿的廣泛應(yīng)用,也引發(fā)了一個(gè)擔(dān)憂,即機(jī)器人能否替代新聞工作者?2015年,美國公共廣播曾找來速度最快的優(yōu)秀ScottHorsley與機(jī)器人WordSmith進(jìn)行一場新聞寫作比賽,雙方被要求就一家餐廳的經(jīng)營情況寫篇短文[2]。WordSmith用2分鐘完成,則花了7分鐘,機(jī)器人在速度上具有明顯的優(yōu)勢,但真人撰寫的內(nèi)容更有創(chuàng)造力,語言更詼諧,能給出更深層次的、個(gè)性化的分析,這是人工智能目前無法替代的。機(jī)器的特長在于海量資訊素材的模式化處理上的高效率,但是在微妙情感關(guān)系的處理和表達(dá)方面,尤其是在價(jià)值規(guī)則的制定和參照框架的選擇方面,人的智能不可或缺[3]。因此,高質(zhì)量的新聞稿需要有記者的個(gè)性化分析和細(xì)膩的文字才能產(chǎn)生。

(三)人機(jī)協(xié)作將實(shí)現(xiàn)新突破毫無疑問,智能化內(nèi)容編寫技術(shù)的橫空出世會引起新聞生產(chǎn)模式的變革。從新聞制作過程的角度來看,人工智能帶來的最顯著變化在于將新聞用戶和傳播效果整合到新聞生產(chǎn)中。因此有學(xué)者認(rèn)為,媒體的智能發(fā)展“重新定義了社會信息化、社會生活和社會結(jié)構(gòu),重新定義了企業(yè)和媒體,重新定義了媒體市場和行業(yè)運(yùn)行機(jī)制,甚至重新定義了信息時(shí)代,人類社會正在快速走向智能互聯(lián)時(shí)代和智能通信時(shí)代”[4]。智能化技術(shù)在一定程度上解放了新聞工作者,它能協(xié)助記者搜集、分析信息,使記者從信息“提供者”轉(zhuǎn)變?yōu)椤敖忉屨摺?,將工作重點(diǎn)放在機(jī)器人無法進(jìn)行的深入報(bào)道和調(diào)查報(bào)告上[5]。而媒體人除了提高自身的新聞專業(yè)能力以外,還要學(xué)會如何更好地運(yùn)用技術(shù)。因此,人機(jī)協(xié)作才能推進(jìn)新聞媒體行業(yè)向前發(fā)展。

二、內(nèi)容投放分發(fā):精準(zhǔn)化

當(dāng)信息傳播由“傳者本位”轉(zhuǎn)變?yōu)椤笆苷弑疚弧敝?,如何貼近用戶需求,在信息海洋中為用戶篩選出他們感興趣的信息,成為了傳播者們需要考慮250技術(shù)與應(yīng)用的問題。在此背景下,算法推薦系統(tǒng)應(yīng)運(yùn)而生,它的首要任務(wù)是根據(jù)用戶的個(gè)人偏好,從大量繁雜的信息中為其推送感興趣的內(nèi)容,實(shí)現(xiàn)個(gè)性化推薦。經(jīng)過二十多年的發(fā)展,算法推薦系統(tǒng)已經(jīng)在電子商務(wù)、視頻網(wǎng)站、社交平臺、新聞媒體等多方面得到廣泛應(yīng)用,并取得了良好成效。

(一)推薦算法概況根據(jù)算法思想的區(qū)別,可以將推薦算法大致分為三大類。第一類為基于內(nèi)容的推薦算法,其原理是通過某用戶喜歡和關(guān)注過的項(xiàng)目尋找類型匹配的項(xiàng)目,并將其推薦給該用戶。此類推薦算法簡單,推薦準(zhǔn)確,但其僅考慮內(nèi)容之間的匹配度,忽視了不同用戶間的匹配度,并且多次推薦相似內(nèi)容可能引起審美疲勞。第二類為協(xié)同過濾算法,該算法在基于內(nèi)容的推薦算法的基礎(chǔ)上,充分考慮了用戶的匹配度,但在初期會面臨冷啟動問題。其實(shí)現(xiàn)過程主要包含搜集用戶信息、相似度計(jì)算、生成推薦列表這三個(gè)步驟[6]。第三類為混合推薦算法,其核心思想是通過加權(quán)、串聯(lián)或并聯(lián)等方式,對多種推薦算法進(jìn)行建模,再利用集成學(xué)習(xí)方法實(shí)現(xiàn)多種算法的優(yōu)勢互補(bǔ)與有機(jī)融合。

(二)推薦算法在新聞內(nèi)容推薦上的運(yùn)用——以今日頭條為例今日頭條是時(shí)下新聞資訊類APP當(dāng)中的佼佼者,而設(shè)計(jì)推薦算法模型為用戶推送個(gè)性化內(nèi)容也是該應(yīng)用的一大特色。2018年1月,今日頭條資深算法架構(gòu)師曹歡歡公開了該應(yīng)用的算法原理。今日頭條的算法推薦系統(tǒng),由協(xié)同過濾算法、LR算法等組合而成,模型結(jié)構(gòu)可根據(jù)不同的業(yè)務(wù)場景作出相應(yīng)調(diào)整。今日頭條選取了四個(gè)典型推薦特征為算法提供數(shù)據(jù)。第一類是相關(guān)性特征,包括內(nèi)容的關(guān)鍵詞、來源、主題等的屬性是否與用戶相匹配,即搜尋用戶興趣點(diǎn)。第二類是環(huán)境特征,包括用戶所處的地理位置、時(shí)間。第三類是熱度特征,包括全局熱度、分類熱度、主題熱度和關(guān)鍵詞熱度等,平臺可以向普遍用戶推送當(dāng)時(shí)熱度較高的內(nèi)容。第四類是協(xié)同特征,主要是通過用戶行為分析用戶間的相似性,將有相似興趣、行為的用戶關(guān)聯(lián)到一起,便于擴(kuò)展算法推薦范圍,改善推送內(nèi)容固化現(xiàn)象[7]。由于今日頭條的內(nèi)容量非常大,單以模型預(yù)估進(jìn)行內(nèi)容推薦難以實(shí)現(xiàn),因此推薦系統(tǒng)中還設(shè)計(jì)了召回策略。召回階段的任務(wù)是考慮用戶的愛好、歷史行為和熱度等,從數(shù)量龐大的內(nèi)容庫(千萬條內(nèi)容)中選擇一個(gè)較小的候選集(數(shù)百到數(shù)千條內(nèi)容),這個(gè)候選集能更精準(zhǔn)地抓住用戶需求。

(三)以算法為基礎(chǔ)進(jìn)行內(nèi)容推送的利弊1.直擊用戶痛點(diǎn),增強(qiáng)用戶黏性。通過推薦算法對信息的篩選,更多有效信息能直接傳遞給用戶。從原來的用戶主動搜尋獲取信息或海量信息流推送的被動接受,轉(zhuǎn)變?yōu)榛谟脩襞d趣需求和信息智能推送的雙相匹配。這給用戶帶來了極大的便利,能讓用戶獲得較好的使用體驗(yàn)感,有利于增強(qiáng)用戶黏性。2.推送內(nèi)容同質(zhì)化,容易形成“信息繭房”。桑斯坦認(rèn)為,在信息傳播中,公眾自身的信息需求并非全方位的,若只注意自己選擇的東西和使自己愉悅的信息,久而久之,會將自身桎梏于蠶繭一般的繭房中[8]。推薦算法持續(xù)根據(jù)用戶的喜好和過往行為進(jìn)行推送,常常出現(xiàn)推薦內(nèi)容同質(zhì)化的情況。用戶一旦固化了閱讀領(lǐng)域,就會對該領(lǐng)域的信息越來越熟悉,而對其他方面的問題知之甚少。長此以往,用戶的自我信息結(jié)構(gòu)將不完整,信息面也將窄化。3.娛樂信息泛濫,缺少深度信息。算法推薦推崇的是技術(shù)理性和數(shù)據(jù)理性,以淺層次的、基本的興趣需求為基點(diǎn),容易出現(xiàn)娛樂信息泛濫,深度信息難以接收的現(xiàn)象。而這樣的情況實(shí)際上以“精神鴉片”剝奪了人獨(dú)立的思考能力,起到了“麻醉”效果,長此以往,會導(dǎo)致用戶對社會公共事務(wù)失去興趣。

三、結(jié)語

隨著人工智能技術(shù)的不斷成熟和計(jì)算機(jī)處理能力的不斷提升,人工智能應(yīng)用領(lǐng)域的廣度和深度都得到了前所未有的發(fā)展。相對而言,人工智能技術(shù)在新媒體的應(yīng)用起步較晚,但帶來的變革卻是令人震撼的。未來,人工智能技術(shù)與大數(shù)據(jù)處理技術(shù)的進(jìn)一步有機(jī)融合將為新媒體領(lǐng)域的信息采集、新聞撰寫、數(shù)據(jù)處理、運(yùn)營推廣等多個(gè)環(huán)節(jié)提供嶄新的發(fā)展思路,為新聞行業(yè)帶來更加高效、高質(zhì)的運(yùn)營模式。

參考文獻(xiàn):

[1]陳爽.智能媒體時(shí)代的新聞生產(chǎn)[J].新聞研究導(dǎo)刊,2020,11(02):36-37.

[2]王杰夫.資深記者與機(jī)器人比賽寫稿,誰會贏?[EB/OL].好奇心日報(bào).

[3]喻國明.“機(jī)器新聞寫作”時(shí)代傳媒發(fā)展的新變局[J].中國報(bào)業(yè),2015(23):22-23.

[4]呂尚彬,劉奕夫.傳媒智能化與智能傳媒[J].當(dāng)代傳播,2016(04):4-8.

[5]許明.機(jī)器人新聞與智能媒體建設(shè)的路徑[J].安陽工學(xué)院學(xué)報(bào),2020,19(02):45-50.

[6]秦燦,李旭東.淺析協(xié)同過濾推薦算法[J].電腦知識與技術(shù),2019,15(13):288-291.

[7]趙燁楠.新媒體平臺的算法推薦機(jī)制研究[D].浙江傳媒學(xué)院,2019.

[8]劉彩霞.融媒體時(shí)代信息繭房的影響及對策[J].視聽,2020(02):206-207.

作者:楊書涵 徐星 單位:安徽大學(xué)

免责声明

本站为第三方开放式学习交流平台,所有内容均为用户上传,仅供参考,不代表本站立场。若内容不实请联系在线客服删除,服务时间:8:00~21:00。

AI写作,高效原创

在线指导,快速准确,满意为止

立即体验
文秘服务 AI帮写作 润色服务 论文发表