前言:想要寫出一篇引人入勝的文章?我們特意為您整理了數(shù)據(jù)挖掘技術(shù)下的學(xué)生管理數(shù)據(jù)范文,希望能給你帶來靈感和參考,敬請(qǐng)閱讀。
摘要:隨著教育信息化的普及,如何有效地利用學(xué)生管理過程中產(chǎn)生的數(shù)據(jù),提高學(xué)生管理水平和效率,成為了新時(shí)代學(xué)生管理過程中亟需解決的問題。文章通過決策樹分析,研究了溫州職業(yè)技術(shù)學(xué)院2013年9月-2018年12月學(xué)生晚歸與當(dāng)時(shí)天氣情況的聯(lián)系。研究發(fā)現(xiàn)在晴天、高溫(29℃以上)、風(fēng)力強(qiáng)(3級(jí)以上)的情況下,更容易發(fā)生晚歸。而在晴天、高溫(29℃以上)、風(fēng)力弱(0-3級(jí))和晴天、低溫(20℃以下)的情況下,發(fā)生晚歸的情況明顯低于平均值。文章的研究結(jié)論可以幫助學(xué)生公寓管理人員,通過天氣預(yù)報(bào)提前識(shí)別可能發(fā)生的晚歸風(fēng)險(xiǎn),有針對(duì)性地進(jìn)行學(xué)生回寢的統(tǒng)計(jì)和檢查。從而降低因晚歸帶來的管理風(fēng)險(xiǎn),提高學(xué)生管理工作的有效性和針對(duì)性。
關(guān)鍵詞:晚歸;數(shù)據(jù)挖掘;決策樹;教育大數(shù)據(jù)
1概述
隨著現(xiàn)代計(jì)算機(jī)和存儲(chǔ)技術(shù)的發(fā)展,每天產(chǎn)生并被記錄的數(shù)據(jù)越來越多。在教育領(lǐng)域這些龐雜的數(shù)據(jù)涵蓋了學(xué)生學(xué)習(xí)、生活和管理的方方面面,是學(xué)校一筆隱性的資源。但是,由于數(shù)據(jù)本身量大,信息渠道錯(cuò)綜復(fù)雜,導(dǎo)致大量數(shù)據(jù)不被重視,從而被認(rèn)為是“垃圾”而被忽略[1]。與此同時(shí),高校規(guī)模的不斷擴(kuò)張和信息技術(shù)的發(fā)展,對(duì)學(xué)生管理、課堂教學(xué)以及就業(yè)工作都提出了新的挑戰(zhàn)。充分地利用教育領(lǐng)域的大數(shù)據(jù),及時(shí)地預(yù)測(cè)和判斷學(xué)生行為,能為高校在心理健康分析、教學(xué)質(zhì)量評(píng)估和學(xué)生就業(yè)等方面提供決策幫助[2]。隨著高校內(nèi)全面地推行一卡通,統(tǒng)一了學(xué)生管理信息獲取的渠道,為研究學(xué)生行為數(shù)據(jù)提供了物質(zhì)基礎(chǔ)。2014年12月起,成都電子科技大學(xué)教育大數(shù)據(jù)研究所在教育部的支持下,開始研發(fā)“學(xué)生畫像”系統(tǒng)。該系統(tǒng)通過學(xué)生日常生活數(shù)據(jù),如學(xué)生進(jìn)入圖書館次數(shù)、打水次數(shù)、就餐次數(shù)等,分析學(xué)生學(xué)習(xí)、生活狀態(tài)以及進(jìn)行過宅預(yù)警、抑郁預(yù)警等一系列預(yù)警,幫助教師和輔導(dǎo)員及時(shí)了解學(xué)生動(dòng)態(tài)[2]。本文收集了溫州職業(yè)技術(shù)學(xué)院2013年9月-2018年12月時(shí)間內(nèi)的學(xué)生晚歸數(shù)據(jù)(晚歸定義:學(xué)生在規(guī)定的門禁時(shí)間之后回到公寓一種違紀(jì)情況),運(yùn)用決策樹分析法,研究晚歸的發(fā)生與當(dāng)天的天氣情況以及自然環(huán)境之間的關(guān)系。以此了解學(xué)生晚歸特點(diǎn),為學(xué)校公寓管理提供決策分析和幫助。
2數(shù)據(jù)與方法
本文收集了溫州職業(yè)技術(shù)學(xué)院2013年9月-2018年12月時(shí)間內(nèi)的學(xué)生晚歸數(shù)據(jù),總共整理匯總1319期學(xué)生晚歸公告。針對(duì)數(shù)據(jù)有效性進(jìn)行了篩選,最后得到832期晚歸公告,每一期公告代表一天,若該日晚上有學(xué)生晚歸,則記為該日發(fā)生晚歸,若該日無學(xué)生晚歸,則記為該日無晚歸。經(jīng)計(jì)算可知,總計(jì)832天平均發(fā)生晚歸的概率為63%。此外,根據(jù)晚歸數(shù)據(jù),查閱歷史天氣資料,整理匯總出對(duì)應(yīng)時(shí)間的最高氣溫、晴雨情況、風(fēng)力強(qiáng)度等天氣情況作為研究晚歸事件發(fā)生的標(biāo)簽[3]。數(shù)據(jù)挖掘(DataMing)本質(zhì)上是從海量的數(shù)據(jù)中提取潛在的有用信息[4]。決策樹算法是數(shù)據(jù)挖掘領(lǐng)域的一種重要的數(shù)據(jù)分類方法,其分類規(guī)則是計(jì)算劃分后樣本的信息增益,通過比較信息增益能夠快捷地將實(shí)際問題轉(zhuǎn)化成各種易操作的分類規(guī)則[5]。本文使用Python3.7實(shí)現(xiàn)決策樹ID3算法,研究晚歸發(fā)生與天氣情況之間的關(guān)系。
3數(shù)據(jù)分析與討論
為了研究學(xué)生晚歸情況與當(dāng)天天氣情況的關(guān)系,首先要將天氣情況數(shù)據(jù)離散化處理。如表1所示,根據(jù)日常經(jīng)驗(yàn)可以將風(fēng)力分為強(qiáng)弱兩類,將晴雨情況也可以分為晴天和雨天兩類。對(duì)于溫度標(biāo)簽,本文將它分為高中低三類,因此必須找到高溫與中溫、中溫和低溫的兩個(gè)臨界點(diǎn)(a,b)。筆者翻閱了相關(guān)資料發(fā)現(xiàn),對(duì)于氣溫高低的劃分并沒有統(tǒng)一的標(biāo)準(zhǔn)。為了更好地得到更好的分類結(jié)果,本文設(shè)計(jì)一個(gè)6×6溫度矩陣G,其中Gij=[ai,bj]代表一種最高溫度分類的可能,a=[15℃,16℃,17℃,18℃,19℃,20℃]b=[25℃,26℃,27℃,28℃,29℃,30℃]。根據(jù)溫度矩陣G,本文分別計(jì)算了上述36種可能的最高溫度分類情況下的決策樹。通過分別計(jì)算每一顆決策樹模型的準(zhǔn)確率,可知Gij=[20℃,29℃]時(shí)模型準(zhǔn)確率達(dá)到最高,從而實(shí)現(xiàn)對(duì)最高溫度的離散化處理,如下表1所示。如圖1a所示,本文通過Python3實(shí)現(xiàn)ID3算法,得到晚歸決策樹。分析決策樹可發(fā)現(xiàn),影響某一天晚上是否會(huì)發(fā)生晚歸的最主要因素是當(dāng)天是晴天還是雨天,其次是最高溫度,最后是風(fēng)力強(qiáng)度。該決策樹每一條樹枝的準(zhǔn)確率可通過計(jì)算得到:P1{X=晚歸│天氣晴∩氣溫高∩風(fēng)力強(qiáng)}=75%、P2{X=無│天氣晴∩氣溫高∩風(fēng)力弱}=46.9%、P3{X=晚歸│天氣晴∩氣溫中}=64.7%、P4{X=無│天氣晴∩氣溫低}=43.4%、P5{X=晚歸│天氣雨}=65.9%由上文可知,平均晚歸率為63%(即非晚歸率為37%),P1、P2和P4的準(zhǔn)確率分別都高出平均值12.5%、9.9%和6.4%,說明以上三種分類方式能夠有效地識(shí)別晚歸。P3和P5只比平均值高出1-2%,說明這兩種分類方式的效果不明顯。在決策樹模型中,針對(duì)分類效果不明顯的樹枝可以進(jìn)行適當(dāng)?shù)摹凹糁Α?。因此,本文根?zhǔn)確率剪去了如下兩條樹枝:{X=晚歸│天氣晴∩氣溫中}和{X=晚歸│天氣雨}。最終得到“剪枝”后的決策樹,如圖1b所示。
4結(jié)論
本文運(yùn)用數(shù)據(jù)挖掘的思想方法,對(duì)溫州職業(yè)技術(shù)學(xué)院2013年9月-2018年12月的學(xué)生晚歸數(shù)據(jù)進(jìn)行分析。通過Python實(shí)現(xiàn)決策樹ID3算法,分別研究了晚歸現(xiàn)象與最高溫度、晴雨情況以及風(fēng)力強(qiáng)度的關(guān)系。分析結(jié)果顯示,在晴天、高溫(29℃以上)、風(fēng)力強(qiáng)(3級(jí)及以上)的夜晚,發(fā)生晚歸的概率明顯高于平均值;在晴天、高溫(29℃以上)、風(fēng)力弱(0-3級(jí))和晴天、低溫(20℃以下)的夜晚,學(xué)生晚歸的概率明顯低于平均值。該項(xiàng)研究結(jié)論可以幫助學(xué)生公寓管理人員,通過天氣預(yù)報(bào)提前識(shí)別可能發(fā)生晚歸的風(fēng)險(xiǎn)日期,有針對(duì)性地進(jìn)行學(xué)生回寢的統(tǒng)計(jì)和檢查,提前聯(lián)系個(gè)別尚未回校的學(xué)生。從而降低因晚歸帶來的管理風(fēng)險(xiǎn),提高學(xué)生管理工作的有效性和針對(duì)性。
參考文獻(xiàn):
[1]丁波,孫力.教育數(shù)據(jù)挖掘研究現(xiàn)狀及趨勢(shì)[J].數(shù)字教育,2015(006):13-16.
[2]劉譞.基于學(xué)生行為的成績(jī)預(yù)測(cè)模型的研究與應(yīng)用[D].電子科技大學(xué),2017.
[3]魯瑋.數(shù)據(jù)挖掘技術(shù)在高職學(xué)生心理健康數(shù)據(jù)中的應(yīng)用研究[D].安徽大學(xué),2019.
[4]JIAWEIHAN,MICHELINEKAMBER,JIANPEI,etal.數(shù)據(jù)挖掘:概念與技術(shù)[M].2012.
[5]周志華,等.機(jī)器學(xué)習(xí)及其應(yīng)用2011[M].清華大學(xué)出版社,2011.
作者:葉超 單位:溫州職業(yè)技術(shù)學(xué)院
級(jí)別:省級(jí)期刊
榮譽(yù):中國優(yōu)秀期刊遴選數(shù)據(jù)庫
級(jí)別:統(tǒng)計(jì)源期刊
榮譽(yù):中國優(yōu)秀期刊遴選數(shù)據(jù)庫
級(jí)別:省級(jí)期刊
榮譽(yù):中國期刊全文數(shù)據(jù)庫(CJFD)
級(jí)別:部級(jí)期刊
榮譽(yù):中國優(yōu)秀期刊遴選數(shù)據(jù)庫
級(jí)別:省級(jí)期刊
榮譽(yù):中國優(yōu)秀期刊遴選數(shù)據(jù)庫