公務(wù)員期刊網(wǎng) 論文中心 正文

債券信用風(fēng)險(xiǎn)論文

前言:想要寫出一篇引人入勝的文章?我們特意為您整理了債券信用風(fēng)險(xiǎn)論文范文,希望能給你帶來靈感和參考,敬請(qǐng)閱讀。

債券信用風(fēng)險(xiǎn)論文

一、大數(shù)據(jù)下債券信用風(fēng)險(xiǎn)評(píng)估的信息提取

傳統(tǒng)的信息不確定和不對(duì)稱的問題,使得投資人對(duì)企業(yè)價(jià)值評(píng)估不準(zhǔn)確,進(jìn)而要求高的風(fēng)險(xiǎn)溢價(jià)。從根本上講,債券市場(chǎng)同股票市場(chǎng)一樣,受宏觀經(jīng)濟(jì)面如貨幣政策、市場(chǎng)信心等市場(chǎng)信息因素的影響。Galai以宏觀市場(chǎng)的定價(jià)行為作為衡量信息不對(duì)稱的程度,說明了信息不對(duì)稱情況下,存在信用利差進(jìn)而影響企業(yè)債券估價(jià)。Moerman通過研究發(fā)現(xiàn),二級(jí)市場(chǎng)中買賣價(jià)差與債券的利率利差存在正相關(guān)關(guān)系,買賣價(jià)差與債券的期限呈現(xiàn)正相關(guān)的關(guān)系。從宏觀角度講,能夠影響企業(yè)債券價(jià)值的因素有市場(chǎng)利率、票面利率、交易量、債券剩余期限、通貨膨脹率等。以大數(shù)據(jù)的視角可以將這些因素統(tǒng)歸于“利率”,因?yàn)楹暧^經(jīng)濟(jì)的各種指標(biāo)最終都會(huì)以利率的形勢(shì)表現(xiàn)出來。另外,從微觀風(fēng)險(xiǎn)信息的角度出發(fā),內(nèi)部的經(jīng)營問題也可能會(huì)迫使企業(yè)在債券到期無力償還,導(dǎo)致投資者面臨違約風(fēng)險(xiǎn)。Duffie以不完全的會(huì)計(jì)信息作為指標(biāo),提出會(huì)計(jì)信息不完整會(huì)使投資者錯(cuò)誤的評(píng)估公司的實(shí)際價(jià)值,結(jié)果是要求公司產(chǎn)生高的風(fēng)險(xiǎn)溢價(jià)。Hong(2000)認(rèn)為公司歷史越悠久就能越好的提供更多的有價(jià)值的信息,從而降低了這種信息不確定性,降低風(fēng)險(xiǎn)溢價(jià)。微觀層面影響的企業(yè)債券價(jià)值的信息,其實(shí)是對(duì)企業(yè)的運(yùn)營狀況、財(cái)務(wù)狀況等的一個(gè)反應(yīng),都體現(xiàn)對(duì)公司“信用”的評(píng)級(jí)。以“利率”和“信用”為給定關(guān)鍵字后,利用大數(shù)據(jù)搜索技術(shù),從而找到更多企業(yè)信息,對(duì)企業(yè)債券評(píng)估具有很高的價(jià)值,運(yùn)用數(shù)據(jù)挖掘技術(shù)有可以從大量的信息中提出影響企業(yè)價(jià)值的因素,這樣可以有效的解決以往的信息不確定和信息不對(duì)稱的問題。

二、大數(shù)據(jù)挖掘技術(shù)在債券信用風(fēng)險(xiǎn)估計(jì)中的應(yīng)用

大數(shù)據(jù)下,我們面對(duì)的是多種多樣紛繁復(fù)雜的數(shù)據(jù),關(guān)于企業(yè)的信息有些是我們需要的,但是很大一部分是無關(guān)聯(lián)的數(shù)據(jù),所以采取新型的數(shù)據(jù)挖掘技術(shù),找到哪些因素能夠影響企業(yè)價(jià)值才是最關(guān)鍵的。數(shù)據(jù)挖掘就是大量的數(shù)據(jù)中,找到其中隱含的、我們看不見的、有價(jià)值的信息。數(shù)據(jù)挖掘技術(shù)有很多種,比較常見的有關(guān)聯(lián)規(guī)則、神經(jīng)網(wǎng)絡(luò)、決策樹等方法。這些方法中很多可以運(yùn)用到債券估價(jià)模型上。在當(dāng)下流行的關(guān)聯(lián)分析算法中,比較有影響力的是Apriori算法。該算法通過多次循環(huán)提取,盡可能減小候選集的規(guī)模,最終形成強(qiáng)關(guān)聯(lián)集合。這種關(guān)聯(lián)規(guī)則可以應(yīng)用到對(duì)影響企業(yè)債券信息的初期處理之中,找出哪些因素能夠?qū)瘍r(jià)值有影響,通過關(guān)聯(lián)規(guī)則可以實(shí)現(xiàn)數(shù)據(jù)的初期整合,刪除無影響的信息。決策樹是一種預(yù)測(cè)分類方法,其目的是對(duì)數(shù)據(jù)集訓(xùn)集進(jìn)行分類,找出有價(jià)值的,隱含的信息。J.R.Quinlan提出的ID3算法根據(jù)信息增益最大化為主要屬性設(shè)置決策樹的節(jié)點(diǎn),然后在各支樹上采用遞歸算法建立分支樹。決策樹可以用于對(duì)企業(yè)價(jià)值信息進(jìn)行分類估價(jià),建立信用風(fēng)險(xiǎn)模型。通過決策樹對(duì)信息的分類,達(dá)到評(píng)價(jià)企業(yè)信用風(fēng)險(xiǎn)等級(jí)評(píng)價(jià)的目的。神經(jīng)網(wǎng)絡(luò)算法是模擬人體細(xì)胞間的神經(jīng)元,通過訓(xùn)練實(shí)現(xiàn)分級(jí)、聚合等多種數(shù)據(jù)挖掘目標(biāo)。神經(jīng)網(wǎng)絡(luò)技術(shù)在債券市場(chǎng)的研究也日趨成熟,Coasts講神經(jīng)網(wǎng)絡(luò)應(yīng)用于公司財(cái)務(wù)狀況評(píng)價(jià),發(fā)現(xiàn)利用神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)正確率在93%。所以,利用神經(jīng)網(wǎng)絡(luò)數(shù)據(jù)挖掘可以根據(jù)提取、篩選、分類后的數(shù)據(jù)進(jìn)行債券價(jià)格的預(yù)測(cè)。通過以上3種數(shù)據(jù)挖掘技術(shù)在債券市場(chǎng)上的應(yīng)用,可以很好的分析企業(yè)價(jià)值信息。關(guān)聯(lián)分析可以對(duì)找出相關(guān)信息,決策樹可以對(duì)信息進(jìn)行分類,神經(jīng)網(wǎng)絡(luò)可以對(duì)債券價(jià)值做一個(gè)很好的預(yù)測(cè)。

三、總結(jié)

本文首先分析了債券市場(chǎng)上的信息問題給企業(yè)債券風(fēng)險(xiǎn)評(píng)估帶來的不良影響。針對(duì)時(shí)代背景,對(duì)大數(shù)據(jù)時(shí)代做了一個(gè)概念性的認(rèn)識(shí)。通過對(duì)以往文獻(xiàn)的研究,找出一些能夠影響企業(yè)債券價(jià)值信息的因素,從宏觀和微觀兩個(gè)方面來對(duì)這些因素進(jìn)行分析和歸類。然后用大數(shù)據(jù)挖掘技術(shù)在債券市場(chǎng)上的信息挖掘的應(yīng)用,關(guān)聯(lián)分析可以對(duì)找出相關(guān)信息,決策樹可以對(duì)信息進(jìn)行分類,神經(jīng)網(wǎng)絡(luò)可以對(duì)債券價(jià)值做一個(gè)很好的預(yù)測(cè)。經(jīng)過研究數(shù)據(jù)挖掘技術(shù)在債券估計(jì)中有著很好的前景。

作者:關(guān)博文 單位:東北電力大學(xué)

相關(guān)熱門標(biāo)簽