前言:想要寫出一篇引人入勝的文章?我們特意為您整理了支持向量機(jī)的英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)范文,希望能給你帶來(lái)靈感和參考,敬請(qǐng)閱讀。
摘要:針對(duì)英語(yǔ)教學(xué)質(zhì)量復(fù)雜的變化特點(diǎn),為獲得高精度的英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)結(jié)果,設(shè)計(jì)了基于主成分分析和支持向量機(jī)的英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)模型。對(duì)英語(yǔ)教學(xué)質(zhì)量的影響指標(biāo)進(jìn)行構(gòu)建,采用主成分分析對(duì)英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)指標(biāo)進(jìn)行優(yōu)化和選擇,利用支持向量機(jī)得到英語(yǔ)教學(xué)質(zhì)量等級(jí)評(píng)價(jià)結(jié)果。具體應(yīng)用實(shí)例的測(cè)試結(jié)果表明,所提模型可對(duì)英語(yǔ)教學(xué)質(zhì)量等級(jí)進(jìn)行高精度評(píng)價(jià),評(píng)價(jià)結(jié)果能夠?yàn)樘岣哂⒄Z(yǔ)教學(xué)質(zhì)量提供有價(jià)值的信息。
關(guān)鍵詞:高校教育;英語(yǔ)教學(xué)質(zhì)量;指標(biāo)體系;指標(biāo)權(quán)值;主成分分析;支持向量機(jī)
0引言
在高校教育中,英語(yǔ)是每一個(gè)大學(xué)生的必修課,而且本科院校對(duì)大學(xué)英語(yǔ)水平有一定的要求,同時(shí)英語(yǔ)與其他課程學(xué)習(xí)直接相關(guān),因此提高大學(xué)生英語(yǔ)教學(xué)質(zhì)量十分重要[1]。而教學(xué)質(zhì)量是衡量英語(yǔ)教學(xué)效果的一個(gè)關(guān)鍵指標(biāo),英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)是一個(gè)十分復(fù)雜的過(guò)程,涉及到許多因素,如評(píng)價(jià)指標(biāo)、評(píng)價(jià)方法等,因此建立一種客觀、科學(xué)的英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)系統(tǒng)是一個(gè)具有挑戰(zhàn)性的問(wèn)題[2⁃3]。相對(duì)于其他課程教學(xué),英語(yǔ)教學(xué)具有自身的特殊性,如互動(dòng)性比較強(qiáng),知識(shí)具有相當(dāng)強(qiáng)的連貫性,因此比一般課程的教學(xué)質(zhì)量評(píng)價(jià)要復(fù)雜得多[4]。最初高校采用簡(jiǎn)單統(tǒng)計(jì)學(xué)方法對(duì)英語(yǔ)教學(xué)質(zhì)量進(jìn)行評(píng)價(jià),假設(shè)英語(yǔ)教學(xué)效果與評(píng)價(jià)指標(biāo)是一種固定的變化關(guān)系,通過(guò)確定變化參數(shù),就可以得到相應(yīng)的英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)結(jié)果[5]。實(shí)際上教學(xué)效果與評(píng)價(jià)指標(biāo)之間不是一種簡(jiǎn)單的變化關(guān)系,因此評(píng)價(jià)結(jié)果的可信度低[6]。隨后引入了專家系統(tǒng)實(shí)現(xiàn)英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià),高校一般通過(guò)學(xué)校的一些教授、專家對(duì)某一位老師的英語(yǔ)教學(xué)效果進(jìn)行評(píng)價(jià)[7],有時(shí)還引入了學(xué)生評(píng)價(jià)結(jié)果,該方法的評(píng)價(jià)結(jié)果可信度高[8],但是每一個(gè)學(xué)校所側(cè)重的評(píng)價(jià)指標(biāo)不同,導(dǎo)致英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)結(jié)果具有一定的主觀性,客觀性不強(qiáng)[9]。近些年,隨著信息處理技術(shù)的不斷成熟,有學(xué)者提出一些英語(yǔ)教學(xué)質(zhì)量自動(dòng)評(píng)價(jià)系統(tǒng),通過(guò)選擇一些評(píng)價(jià)指標(biāo),并根據(jù)指標(biāo)收集英語(yǔ)教學(xué)的歷史數(shù)據(jù),采用相應(yīng)方法對(duì)英語(yǔ)教學(xué)質(zhì)量的等級(jí)進(jìn)行估計(jì),最后綜合專家評(píng)價(jià)結(jié)果產(chǎn)生英語(yǔ)教學(xué)質(zhì)量的最后評(píng)價(jià)等級(jí)[10]。在實(shí)際應(yīng)用中,還存在許多問(wèn)題有待解決,如英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)指標(biāo)多,指標(biāo)之間存在一定的共非線性,指標(biāo)相互干擾,同時(shí)評(píng)價(jià)指標(biāo)過(guò)多,計(jì)算時(shí)間復(fù)雜度高,英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)效率低等[11⁃12]。為了獲得較好的英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)結(jié)果,提出基于主成分分析和支持向量機(jī)的英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)方法,具體應(yīng)用實(shí)例測(cè)試結(jié)果表明,該方法可以對(duì)英語(yǔ)教學(xué)質(zhì)量等級(jí)進(jìn)行高精度的評(píng)價(jià),可為英語(yǔ)教學(xué)過(guò)程提供一定的參考信息。
1支持向量機(jī)和主成分分析
1.1支持向量機(jī)由于英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)是一個(gè)分類問(wèn)題,因此需要構(gòu)建分類器,本文采用支持向量機(jī)實(shí)現(xiàn)。設(shè)一個(gè)英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)問(wèn)題的數(shù)據(jù)集為(xi,yi),xi∈Rn,yi∈{-1,1},i=1,2,…,n,xi為英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)的指標(biāo),yi表示英語(yǔ)教學(xué)質(zhì)量的等級(jí),基于風(fēng)險(xiǎn)最小化理論,建立如下的超平面:y=ωTΦ(x)+b (1)式中:ω為法向量;b為偏移向量。如果問(wèn)題不是線性不可分,那么直接對(duì)式(1)進(jìn)行求解不現(xiàn)實(shí)。為了建立最優(yōu)的超平面,對(duì)非線性分類問(wèn)題進(jìn)行轉(zhuǎn)換和優(yōu)化,即:minJ(ω,ξ)=12ω2+C∑i=1nξi s.t.yi(ω⋅Φ(xi)+b)1-ξi,ξi0,i=1,2,⋯,n (2)式中C表示錯(cuò)誤分類結(jié)果的懲罰參數(shù)。由于每引入一個(gè)新的樣本時(shí),支持向量機(jī)就要重新進(jìn)行一次學(xué)習(xí),當(dāng)樣本規(guī)模大時(shí),學(xué)習(xí)時(shí)間就長(zhǎng),導(dǎo)致計(jì)算時(shí)間的復(fù)雜度相當(dāng)高。為了加快學(xué)習(xí)速度,引入Lagrange乘子得到對(duì)偶問(wèn)題,這樣超平面分類函數(shù)為:f(x)=sgnæèçöø÷∑i=1lαiyi(Φ(x)⋅Φ(x)i)+b (3)式中αi為L(zhǎng)agrange乘子。采用核函數(shù)K(xi,x)代替點(diǎn)積操作(Φ(x)⋅Φ(x)i),簡(jiǎn)化支持向量機(jī)的分類過(guò)程,式(3)變?yōu)椋篺(x)=sgnæèçöø÷∑i=1lαiyiK(xi,x)+b (4)1.2主成分分析算法英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)指標(biāo)比較多,需要通過(guò)一定技術(shù)對(duì)評(píng)價(jià)指標(biāo)進(jìn)行篩選,以減少評(píng)價(jià)指標(biāo)的數(shù)量,本文引入主成分分析實(shí)現(xiàn)英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)質(zhì)量的選擇。主成分分析算法可以將英語(yǔ)教學(xué)質(zhì)量的指標(biāo)進(jìn)行組合,得到一組新的指標(biāo),新指標(biāo)可以描述原始全部指標(biāo)的大部分信息,從而有效降低了英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)分類器的輸入向量數(shù),具體步驟為:1)原始英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)指標(biāo)組成的集合為X=(X1,X2,⋯,Xp),p表示評(píng)價(jià)指標(biāo)數(shù)量。由于英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)指標(biāo)的單位不一樣,使得數(shù)據(jù)差異大,會(huì)給英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)結(jié)果帶來(lái)負(fù)面影響。為了消除該負(fù)面影響,對(duì)英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)的指標(biāo)值進(jìn)行標(biāo)準(zhǔn)化處理,具體如下:xˉij=(x)ij-xˉjsj(5)其中:ìíîïïïïxˉj=1n∑i=1nxijsj=1n-1∑i=1n(x)ij-xˉj2(6)2)對(duì)英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)指標(biāo)的相關(guān)系數(shù)矩陣進(jìn)行計(jì)算,得到:R=(r)ijp×p,rij=∑k=1nxˉkixˉkj(n-1)(7)式中rij表示第i個(gè)英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)樣本的第j個(gè)指標(biāo)的相關(guān)系數(shù)。3)對(duì)特征方程λu=Ru進(jìn)行求解,可以得特征值λ=(λ1,λ2,⋯,λp),λ1λ2⋯λp0以及相應(yīng)向量u=(u1,u2,⋯,up),uj=(u1j,u2j,⋯,upj)。4)計(jì)算主要成分的累計(jì)方差貢獻(xiàn)率∑i=1pαi,其中,αi表示第i個(gè)主要成分的貢獻(xiàn)率,當(dāng)前m個(gè)主要成分滿足條件∑i=1mαi85%時(shí),那么就可以認(rèn)為這m個(gè)主要成分Y1,Y2,⋯,Ym就是處理后的教學(xué)質(zhì)量評(píng)價(jià)新指標(biāo),它們作為英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)的新特征向量,減少教學(xué)質(zhì)量評(píng)價(jià)指標(biāo)的維數(shù)。
2主成分分析和支持向量機(jī)的英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)模型
2.1構(gòu)建英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)指標(biāo)體系為得到理想的英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)結(jié)果,首先要構(gòu)建最優(yōu)的評(píng)價(jià)指標(biāo)體系。當(dāng)前英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)指標(biāo)體系有多種方法,每一種方法的選擇標(biāo)準(zhǔn)不一樣,如:有的以教學(xué)內(nèi)容為重,有的以課堂教學(xué)為重,其他方面為輔。本文從兩個(gè)方面對(duì)評(píng)價(jià)指標(biāo)進(jìn)行構(gòu)建,一個(gè)是教師,另一個(gè)是學(xué)生.2.2英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)模型的工作步驟基于數(shù)據(jù)挖掘的英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)模型的工作步驟如下:1)對(duì)一個(gè)學(xué)校的具體某個(gè)老師的英語(yǔ)教學(xué)相關(guān)數(shù)據(jù)進(jìn)行收集,并建立英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)指標(biāo)體系。2)根據(jù)英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)指標(biāo)體系對(duì)數(shù)據(jù)進(jìn)行相應(yīng)處理,并得到英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)等級(jí),它們構(gòu)建了英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)的學(xué)習(xí)樣本。3)采用主成分分析對(duì)英語(yǔ)教學(xué)質(zhì)量的原始評(píng)價(jià)指標(biāo)進(jìn)行降維處理,建立新的英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)指標(biāo)體系,減少指標(biāo)之間的共線性關(guān)系,從而大幅度降低輸入向量的數(shù)量。4)根據(jù)主成分分析得到結(jié)果,并對(duì)英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)的原始學(xué)習(xí)樣本進(jìn)行處理,可以有效減少數(shù)據(jù)規(guī)模。5)選擇部分?jǐn)?shù)據(jù)組成英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)的訓(xùn)練樣本,用于建立英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)指標(biāo)的分類器。6)根據(jù)支持向量機(jī)對(duì)英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)的訓(xùn)練樣本進(jìn)行學(xué)習(xí),建立英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)的分類函數(shù)。7)根據(jù)英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)的分類函數(shù)對(duì)訓(xùn)練樣本進(jìn)行評(píng)價(jià),得到相應(yīng)的英語(yǔ)教學(xué)質(zhì)量等級(jí)。綜上可知。
3教學(xué)質(zhì)量評(píng)價(jià)的測(cè)試實(shí)驗(yàn)
3.1數(shù)據(jù)來(lái)源為了分析英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)效果,選擇某高校的英語(yǔ)課堂教學(xué)效果作為研究對(duì)象,根據(jù)圖1的13個(gè)評(píng)價(jià)指標(biāo)收集相關(guān)數(shù)據(jù),并通過(guò)專家得到相應(yīng)的英語(yǔ)教學(xué)質(zhì)量等級(jí)值,共得到200個(gè)樣本,部分?jǐn)?shù)據(jù)如表1所示。其中,x1表示停課次數(shù),x2表示調(diào)課次數(shù),依次類推,x13表示批改作業(yè)的認(rèn)真和耐心程度,y表示英語(yǔ)教學(xué)質(zhì)量的等級(jí)值。3.2主成分分析算法的結(jié)果采用主成分對(duì)表1中的數(shù)據(jù)進(jìn)行分析,得到主成分的累計(jì)貢獻(xiàn)率如表2所示,對(duì)表2的累計(jì)貢獻(xiàn)率進(jìn)行分析可知,前面5個(gè)主成分的累計(jì)貢獻(xiàn)率超過(guò)了85%,這表明它們可以代表原始指標(biāo)的重要信息,因此選擇5個(gè)主成分重新構(gòu)建英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)數(shù)據(jù),并采用20個(gè)數(shù)據(jù)作為測(cè)試樣本,其他為英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)的訓(xùn)練樣本。3.3確定支持向量機(jī)的核函數(shù)在英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)過(guò)程中,支持向量機(jī)核函數(shù)的選擇十分重要,不同核函數(shù)得到的英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)結(jié)果不同,本文采用幾種常用的核函數(shù)進(jìn)行性能測(cè)試,得到的結(jié)果如表3所示,對(duì)表3的測(cè)試結(jié)果進(jìn)行分析,RBF函數(shù)的性能最優(yōu),為此采用該核函數(shù)進(jìn)行英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)。3.4英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)結(jié)果采用本文模型對(duì)英語(yǔ)教學(xué)質(zhì)量進(jìn)行評(píng)價(jià),得到20個(gè)測(cè)試樣本的評(píng)價(jià)結(jié)果,具體如圖3所示。從圖3可以看出,通過(guò)本文模型對(duì)英語(yǔ)教學(xué)質(zhì)量進(jìn)行評(píng)價(jià),可以得到較好的評(píng)價(jià)結(jié)果,可以對(duì)英語(yǔ)教學(xué)過(guò)程進(jìn)行準(zhǔn)確擬合,能夠?yàn)閷?shí)際英語(yǔ)教學(xué)過(guò)程提供有用的信息。采用RBF神經(jīng)網(wǎng)絡(luò)+主成分分析(PCA⁃RBF)、沒(méi)有采用主成分分析算法的支持向量機(jī)(SVM)進(jìn)行英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)對(duì)比實(shí)驗(yàn),得到的結(jié)果如表4所示。對(duì)表4的英語(yǔ)教學(xué)質(zhì)量綜合評(píng)價(jià)結(jié)果進(jìn)行分析可知:1)PCA⁃RBF的英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)精度最低,這是因?yàn)殡m然通過(guò)主成分分析算法對(duì)教學(xué)質(zhì)量特征進(jìn)行了選擇,但是RBF神經(jīng)網(wǎng)絡(luò)具有過(guò)擬合學(xué)習(xí)缺陷,導(dǎo)致部分樣本的英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)錯(cuò)誤比較大,雖然其英語(yǔ)教學(xué)質(zhì)量的評(píng)價(jià)時(shí)間最短,工作效率最高,但是評(píng)價(jià)精度不能滿足實(shí)際應(yīng)用的要求,適用性比較差。2)SVM的英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)精度也要低于本文模型,這是因?yàn)樘嗟慕虒W(xué)質(zhì)量評(píng)價(jià)指標(biāo)存在,它們之間相互干擾,對(duì)評(píng)價(jià)結(jié)果產(chǎn)生一定的負(fù)面影響,本文模型通過(guò)主成分分析提取了能夠描述教學(xué)質(zhì)量特征的主成分,獲得了更優(yōu)的英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)結(jié)果,而且平均評(píng)價(jià)時(shí)間縮短,加快了英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)速度,這是因?yàn)檩斎胂蛄康臄?shù)量變少,英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)效率得到提高。
4結(jié)語(yǔ)
英語(yǔ)是大學(xué)中的一門核心課程,其教學(xué)質(zhì)量直接影響到其他課程學(xué)習(xí),而英語(yǔ)教學(xué)質(zhì)量的評(píng)價(jià)指標(biāo)眾多,評(píng)價(jià)指標(biāo)之間相互影響,而且有一定的重復(fù)度,導(dǎo)致教學(xué)質(zhì)量等級(jí)與指標(biāo)是一種復(fù)雜、非線性變化關(guān)系,為了提高英語(yǔ)教學(xué)質(zhì)量的評(píng)價(jià)準(zhǔn)確性,本文提出基于主成分分析和支持向量機(jī)的英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)模型,采用層次分析方法構(gòu)建英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)指標(biāo),使評(píng)價(jià)結(jié)果的可解釋性強(qiáng),而且評(píng)價(jià)結(jié)果更加科學(xué),通過(guò)引入主成分分析對(duì)英語(yǔ)教學(xué)質(zhì)量進(jìn)行優(yōu)化和選擇,去除一些作用不大的評(píng)價(jià)指標(biāo),加快英語(yǔ)教學(xué)質(zhì)量的評(píng)價(jià)速度,采用支持向量機(jī)對(duì)英語(yǔ)教學(xué)質(zhì)量等級(jí)進(jìn)行估計(jì),獲得了理想的英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)結(jié)果。在英語(yǔ)教學(xué)質(zhì)量評(píng)價(jià)過(guò)程中,支持向量機(jī)參數(shù)對(duì)評(píng)價(jià)結(jié)果有一定的影響,如何確定最合適的參數(shù)有待于進(jìn)一步研究和探討。
參考文獻(xiàn)
[1]劉強(qiáng),戴起勛.高等教育大眾化條件下教學(xué)質(zhì)量評(píng)價(jià)體系研究現(xiàn)狀[J].江蘇大學(xué)學(xué)報(bào),2003,25(2):31⁃34.LIUQiang,DAIQixun.Theconditionofpopularizationofhighereducationteachingqualityevaluationsystemresearch[J].Jour⁃nalofJiangsuUniversity,2003,25(2):31⁃34.
[2]徐風(fēng)華,李波.多元統(tǒng)計(jì)分析在研究型教學(xué)評(píng)價(jià)中的應(yīng)用[J].湖北師范學(xué)院學(xué)報(bào)(自然科學(xué)版),2009,29(3):33⁃38.XUFenghua,LIBo.Applicationofmultivariatestatisticalana⁃lysisinresearchteachingevaluation[J].JournalofHubeiNormalUniversity(naturalscienceedition),2009,29(3):33⁃38.
[3]張首芳.教師教學(xué)質(zhì)量評(píng)價(jià)新指標(biāo)體系的建立[J].計(jì)算機(jī)教育,2003(5):45⁃46.ZHANGShoufang.Theestablishmentofanewindexsystemforteachingqualityevaluationofteachers[J].Computereduca⁃tion,2003(5):45⁃46.
[4]李巧林,鄭傳寧,王章豹.關(guān)于高校教學(xué)質(zhì)量管理與監(jiān)控體系建設(shè)的探析[J].合肥工業(yè)大學(xué)學(xué)報(bào),2001,15(3):76⁃81.LIQiaolin,ZHENGChuanning,WANGZhangbao.Thequali⁃tymanagementandmonitoringsystemofcollegeteachingontheconstruction[J].JournalofHefeiUniversityofTechnology,2001,15(3):76⁃81.
[5]孫曉玲,王寧,梁艷.應(yīng)用BP神經(jīng)網(wǎng)絡(luò)的教學(xué)評(píng)價(jià)模型及仿真[J].計(jì)算機(jī)仿真,2010,27(11):314⁃318.SUNXiaoling,WANGNing,LIANGYan.ApplicationofBPneuralnetworkteachingevaluationmodelandsimulation[J].Computersimulation,2010,27(11):314⁃318.
[6]李強(qiáng),黃玉珍.本科課堂教學(xué)質(zhì)量評(píng)價(jià)的模糊數(shù)學(xué)方法[J].南通大學(xué)學(xué)報(bào)(自然科學(xué)版),2008,7(2):92⁃94.LIQiang,HUANGYuzhen.Fuzzymathematicsmethodforevaluatingthequalityofundergraduateclassteaching[J].Jour⁃nalofNantongUniversity(naturalscienceedition),2008,7(2):92⁃94.
[7]屈慧瓊,劉華良.層次分析法在高校形勢(shì)與政策教學(xué)質(zhì)量評(píng)價(jià)中的應(yīng)用[J].南華大學(xué)學(xué)報(bào)(自然科學(xué)版),2008,22(2):75⁃79.QUHuiqiong,LIUHualiang.Applicationofanalytichierarchyprocessinteachingqualityevaluationofsituationandpolicyinuniversities[J].JournalofUniversityofSouthChina(scienceandtechnology),2008,22(2):75⁃79.
[8]馬星.基于層次關(guān)聯(lián)理論的教學(xué)質(zhì)量評(píng)價(jià)方法[J].武漢理工大學(xué)學(xué)報(bào)(信息與管理工程版),2007,29(5):122⁃125.MAXing.Teachingqualityevaluationmethodbasedonhierar⁃chicalassociationtheory[J].JournalofWuhanUniversityofTechnology(informationandmanagementengineeringedi⁃tion),2007,29(5):122⁃125.
[9]馬紅.運(yùn)用灰色趨勢(shì)關(guān)聯(lián)方法評(píng)價(jià)教學(xué)質(zhì)量[J].武漢理工大學(xué)學(xué)報(bào),2010,32(15):181⁃184.MAHong.Evaluationofteachingqualityusinggreytrendcorre⁃lationmethod[J].JournalofWuhanUniversityofTechnology,2010,32(15):181⁃184.
[10]汪旭暉,黃飛華.基于神經(jīng)網(wǎng)絡(luò)的教學(xué)質(zhì)量評(píng)價(jià)模型及應(yīng)用[J].高等工程教育研究,2007,21(5):78⁃81.WANGXuhui,HUANGFeihua.Teachingqualityevaluationmodelandapplicationbasedonneuralnetwork[J].Higheren⁃gineeringeducationresearch,2007,21(5):78⁃81.
[11]付海艷,符謀松,張誠(chéng).粗糙集理論在高校教學(xué)質(zhì)量評(píng)價(jià)分析中的應(yīng)用[J].計(jì)算機(jī)工程與應(yīng)用,2007,43(36):214⁃216.FUHaiyan,F(xiàn)UMousong,ZHANGCheng.Applicationofroughsettheoryintheevaluationandanalysisofteachingqualityincollegesanduniversities[J].Computerengineeringandapplication,2007,43(36):214⁃216.
[12]許敏,王士同.PSO優(yōu)化的神經(jīng)網(wǎng)絡(luò)在教學(xué)質(zhì)量評(píng)價(jià)中的應(yīng)用[J].計(jì)算機(jī)工程與設(shè)計(jì),2008,29(20):5327⁃5330.XUMin,WANGShitong.PSOoptimizedneuralnetworkap⁃pliedintheevaluationofteachingquality[J].Computerengi⁃neeringanddesign,2008,29(20):5327⁃5330.
作者:張明亞 單位:廣西民族師范學(xué)院