前言:一篇好文章的誕生,需要你不斷地搜集資料、整理思路,本站小編為你收集了豐富的高考結(jié)束后主題范文,僅供參考,歡迎閱讀并收藏。
畢業(yè)講話
高考結(jié)束了,××中學(xué)取得了非常好的成績(jī),這是讓我這個(gè)房中人覺(jué)得最驕傲的事,高三年級(jí)的同事們經(jīng)過(guò)了那么多天的奮戰(zhàn),在這個(gè)收獲的時(shí)刻,本應(yīng)該好好休整一下,他們卻犧牲休息時(shí)間,給我們提供了一個(gè)想高三年級(jí)同事們學(xué)習(xí)的機(jī)會(huì)。就像他們所說(shuō)的:對(duì)于高考工作的種種反思和總結(jié)遠(yuǎn)遠(yuǎn)沒(méi)有結(jié)束。他們把他們所總結(jié)的成功的經(jīng)驗(yàn)、失敗的教訓(xùn),都介紹給我們,來(lái)讓大家為明年的高考作好準(zhǔn)備。我雖然沒(méi)有明年高考的任務(wù),也沒(méi)有帶過(guò)高三,但他們的話確實(shí)我受益匪淺,為我的工作指明了方向。
首先:注重知識(shí)儲(chǔ)備
所有老師,不管是年輕還是老教師都注重大量的知識(shí)儲(chǔ)備和提高解題能力。他們把近幾年高考題都做了,做到心中有數(shù),了解高考題型的分布,重點(diǎn)考查的知識(shí)點(diǎn)有哪些,解答題的步驟及得分點(diǎn)是什么。了解清楚這些,便于選擇有針對(duì)性的題目對(duì)學(xué)生加以訓(xùn)練。還學(xué)習(xí)去年的《教學(xué)大綱》,《考試說(shuō)明》,作為借鑒。我想我不管明年具體作什么,都要好好作好這一點(diǎn),隨時(shí)做好這個(gè)準(zhǔn)備。
其次:分析學(xué)生情況,最大限度挖掘?qū)W生潛力
教師只有透徹了解學(xué)生知識(shí)掌握的情況,才能夠發(fā)現(xiàn)其漏洞,也才有可能及時(shí)彌補(bǔ)。因此,每位老師在高考復(fù)習(xí)開(kāi)始時(shí)便逐一地為學(xué)生把脈,認(rèn)真分析每位學(xué)生的優(yōu)勢(shì)、劣勢(shì),按不同程度把他們分成幾層,采取分層輔導(dǎo)的辦法。
第三:牢固打好數(shù)學(xué)基礎(chǔ)
數(shù)學(xué)的“三基”是指數(shù)學(xué)的基礎(chǔ)知識(shí)、基本技能和基本方法.抓好“三基”,其重要性是不言而喻的.只有打好堅(jiān)實(shí)基礎(chǔ),才有取得好成績(jī)的可能.在這方面李林老師的做法我認(rèn)為非常值得我學(xué)習(xí):
1.用好課本.在平時(shí)教學(xué)中要用好課本,就是到了復(fù)習(xí)階段,也要以課本為主,充分發(fā)揮教材中知識(shí)更新形成過(guò)程和例題的典型作用.
2.精選例題、習(xí)題.要求選擇的題目典型有代表性,體現(xiàn)通性、通法,有舉一反三的作用.
3.反復(fù)訓(xùn)練,達(dá)到自動(dòng)化.
4.注重知識(shí)體系的形成.。要求基礎(chǔ)題所有同學(xué)都要過(guò)關(guān),中檔題大部分過(guò)關(guān),難題一小部分同學(xué)過(guò)關(guān)即可。
最后:吳增廣老師根據(jù)近幾年閱卷教師反饋的信息,考生答題失分的原因,分析得非常透徹,也是現(xiàn)在高一高二學(xué)生的普遍問(wèn)題,它們是:①審題不夠仔細(xì);
②書(shū)寫(xiě)不夠規(guī)范;
③基礎(chǔ)不夠扎實(shí);
④思維不夠靈敏;
解析幾何
第二十七講
拋物線
2019年
1.(2019全國(guó)II文9)若拋物線y2=2px(p>0)的焦點(diǎn)是橢圓的一個(gè)焦點(diǎn),則p=
A.2
B.3
C.4
D.8
2.(2019浙江21)如圖,已知點(diǎn)為拋物線的焦點(diǎn),過(guò)點(diǎn)F的直線交拋物線于A、B兩點(diǎn),點(diǎn)C在拋物線上,使得的重心G在x軸上,直線AC交x軸于點(diǎn)Q,且Q在點(diǎn)F右側(cè).記的面積為.
(1)求p的值及拋物線的準(zhǔn)線方程;
(2)求的最小值及此時(shí)點(diǎn)G的坐標(biāo).
3.(2019全國(guó)III文21)已知曲線C:y=,D為直線y=上的動(dòng)點(diǎn),過(guò)D作C的兩條切線,切點(diǎn)分別為A,B.
(1)證明:直線AB過(guò)定點(diǎn):
(2)若以E(0,)為圓心的圓與直線AB相切,且切點(diǎn)為線段AB的中點(diǎn),求該圓的方程.
1.解析(1)設(shè),則.
由于,所以切線DA的斜率為,故
,整理得
設(shè),同理可得.
故直線AB的方程為.
所以直線AB過(guò)定點(diǎn).
(2)由(1)得直線AB的方程為.
由,可得.
于是.
設(shè)M為線段AB的中點(diǎn),則.
由于,而,與向量平行,所以.解得t=0或.
當(dāng)=0時(shí),=2,所求圓的方程為;
當(dāng)時(shí),,所求圓的方程為.
2010-2018年
一、選擇題
1.(2017新課標(biāo)Ⅱ)過(guò)拋物線:的焦點(diǎn),且斜率為的直線交于點(diǎn)(在軸上方),為的準(zhǔn)線,點(diǎn)在上且,則到直線的距離為
A.
B.
C.
D.
2.(2016年全國(guó)II卷)設(shè)F為拋物線C:y2=4x的焦點(diǎn),曲線y=(k>0)與C交于點(diǎn)P,PFx軸,則k=
A.
B.1
C.
D.2
3.(2015陜西)已知拋物線()的準(zhǔn)線經(jīng)過(guò)點(diǎn),則該拋物線的焦點(diǎn)坐標(biāo)為
A.(-1,0)
B.(1,0)
C.(0,-1)
D.(0,1)
4.(2015四川)設(shè)直線與拋物線相交于兩點(diǎn),與圓相切于點(diǎn),且為線段的中點(diǎn).若這樣的直線恰有4條,則的取值范圍是
A.
B.
C.
D.
5.(2014新課標(biāo)1)已知拋物線:的焦點(diǎn)為,準(zhǔn)線為,是上一點(diǎn),是直線與的一個(gè)焦點(diǎn),若,則=
A.
B.
C.3
D.2
6.(2014新課標(biāo)2)設(shè)為拋物線C:的焦點(diǎn),過(guò)且傾斜角為30°的直線交于兩點(diǎn),
為坐標(biāo)原點(diǎn),則的面積為
A.
B.
C.
D.
7.(2014遼寧)已知點(diǎn)在拋物線C:的準(zhǔn)線上,過(guò)點(diǎn)A的直線與C在第一象限相切于點(diǎn)B,記C的焦點(diǎn)為F,則直線BF的斜率為
A.
B.
C.
D.
8.(2013新課標(biāo)1)為坐標(biāo)原點(diǎn),為拋物線的焦點(diǎn),為上一點(diǎn),若,則的面積為
A.
B.
C.
D.
9.(2013江西)已知點(diǎn),拋物線的焦點(diǎn)為F,射線FA與拋物線C相交于點(diǎn)M,與其準(zhǔn)線相交于點(diǎn)N,則|FM|:|MN|=
A.2:
B.1:2
C.1:
D.1:3
10.(2012新課標(biāo))等軸雙曲線的中心在原點(diǎn),焦點(diǎn)在軸上,與拋物線的準(zhǔn)線交于、兩點(diǎn),,則的實(shí)軸長(zhǎng)為
A.
B.
C.4
D.8
11.(2012山東)已知雙曲線:的離心率為2.若拋物線的焦點(diǎn)到雙曲線的漸近線的距離為2,則拋物線的方程為
A.
B.
C.
D.
12.(2011新課標(biāo))已知直線過(guò)拋物線C的焦點(diǎn),且與C的對(duì)稱軸垂直,與C交于,兩點(diǎn),,為C的準(zhǔn)線上一點(diǎn),則的面積為
A.18
B.24
C.36
D.48
二、填空題
13.(2018北京)已知直線過(guò)點(diǎn)且垂直于軸,若被拋物線截得的線段長(zhǎng)為4,則拋物線的焦點(diǎn)坐標(biāo)為_(kāi)________.
14.(2015陜西)若拋物線的準(zhǔn)線經(jīng)過(guò)雙曲線的一個(gè)焦點(diǎn),則=
15.(2014湖南)如圖,正方形的邊長(zhǎng)分別為,原點(diǎn)為的中點(diǎn),拋物線經(jīng)過(guò)
.
16.(2013北京)若拋物線的焦點(diǎn)坐標(biāo)為,則
,準(zhǔn)線方程為
.
17.(2012陜西)右圖是拋物線形拱橋,當(dāng)水面在時(shí),拱頂離水面2米,水面寬4米,水位下降1米后,水面寬
米.
18.(2010浙江)設(shè)拋物線的焦點(diǎn)為,點(diǎn).若線段的中點(diǎn)在拋物線上,則到該拋物線準(zhǔn)線的距離為_(kāi)____________.
三、解答題
19.(2018全國(guó)卷Ⅱ)設(shè)拋物線的焦點(diǎn)為,過(guò)且斜率為的直線與交于,兩點(diǎn),.
(1)求的方程;
(2)求過(guò)點(diǎn),且與的準(zhǔn)線相切的圓的方程.
20.(2018浙江)如圖,已知點(diǎn)是軸左側(cè)(不含軸)一點(diǎn),拋物線:上存在不同的兩點(diǎn),滿足,的中點(diǎn)均在上.
(1)設(shè)中點(diǎn)為,證明:垂直于軸;
(2)若是半橢圓()上的動(dòng)點(diǎn),求面積的取值范圍.
21.(2017新課標(biāo)Ⅰ)設(shè),為曲線:上兩點(diǎn),與的橫坐標(biāo)之和為4.
(1)求直線的斜率;
(2)設(shè)為曲線上一點(diǎn),在處的切線與直線平行,且,求直線的方程.
22.(2017浙江)如圖,已知拋物線.點(diǎn),,拋物線上的點(diǎn),過(guò)點(diǎn)作直線的垂線,垂足為.
(Ⅰ)求直線斜率的取值范圍;
(Ⅱ)求的最大值.
23.(2016年全國(guó)I卷)在直角坐標(biāo)系中,直線:交軸于點(diǎn),交拋物線:于點(diǎn),關(guān)于點(diǎn)的對(duì)稱點(diǎn)為,連結(jié)并延長(zhǎng)交于點(diǎn).
(I)求;
(II)除以外,直線與是否有其它公共點(diǎn)?說(shuō)明理由.
24.(2016年全國(guó)III卷)已知拋物線:的焦點(diǎn)為,平行于軸的兩條直線分別交于兩點(diǎn),交的準(zhǔn)線于兩點(diǎn).
(I)若在線段上,是的中點(diǎn),證明;
(II)若的面積是的面積的兩倍,求中點(diǎn)的軌跡方程.
25.(2016年浙江)如圖,設(shè)拋物線的焦點(diǎn)為F,拋物線上的點(diǎn)A到y(tǒng)軸的距離等于.
(I)求p的值;
(II)若直線AF交拋物線于另一點(diǎn)B,過(guò)B與x軸平行的直線和過(guò)F與AB垂直的直線交于點(diǎn)N,AN與x軸交于點(diǎn)M.求M的橫坐標(biāo)的取值范圍.
26.(2015浙江)如圖,已知拋物線:,圓:,過(guò)點(diǎn)作不過(guò)原點(diǎn)的直線,分別與拋物線和圓相切,為切點(diǎn).
(Ⅰ)求點(diǎn)的坐標(biāo);
(Ⅱ)求的面積.
注:直線與拋物線有且只有一個(gè)公共點(diǎn),且與拋物線的對(duì)稱軸不平行,則該直線與拋物線相切,稱該公共點(diǎn)為切點(diǎn).
27.(2015福建)已知點(diǎn)為拋物線()的焦點(diǎn),點(diǎn)在拋物線上,且.
(Ⅰ)求拋物線的方程;
(Ⅱ)已知點(diǎn),延長(zhǎng)交拋物線于點(diǎn),證明:以點(diǎn)為圓心且與直線相切的圓,必與直線相切.
28.(2014山東)已知拋物線的焦點(diǎn)為,為上異于原點(diǎn)的任意一點(diǎn),過(guò)點(diǎn)的直線交于另一點(diǎn),交軸的正半軸于點(diǎn),且有,當(dāng)點(diǎn)的橫坐標(biāo)為3時(shí),為正三角形。
(Ⅰ)求的方程;
(Ⅱ)若直線,且和有且只有一個(gè)公共點(diǎn),
(?。┳C明直線過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo);
(ⅱ)的面積是否存在最小值?若存在,請(qǐng)求出最小值;若不存在,請(qǐng)說(shuō)明理由.
29.(2014陜西)如圖,曲線由上半橢圓和部分拋物線連接而成,的公共點(diǎn)為,其中的離心率為.
(Ⅰ)求的值;
(Ⅱ)過(guò)點(diǎn)的直線與分別交于(均異于點(diǎn)),若,求直線的方程.
30.(2013廣東)已知拋物線的頂點(diǎn)為原點(diǎn),其焦點(diǎn)到直線的距離為.設(shè)為直線上的點(diǎn),過(guò)點(diǎn)作拋物線的兩條切線,其中為切點(diǎn).
(Ⅰ)求拋物線的方程;
(Ⅱ)當(dāng)點(diǎn)為直線上的定點(diǎn)時(shí),求直線的方程;
(Ⅲ)當(dāng)點(diǎn)在直線上移動(dòng)時(shí),求的最小值.
31.(2012新課標(biāo))設(shè)拋物線:的焦點(diǎn)為,準(zhǔn)線為,為上一點(diǎn),已知以為圓心,為半徑的圓交于、點(diǎn).
(Ⅰ)若,的面積為,求的值及圓的方程;
(Ⅱ)若、、三點(diǎn)在同一直線上,直線與平行,且與只有一個(gè)公共點(diǎn),求坐標(biāo)原點(diǎn)到、距離的比值.
32.(2011新課標(biāo))在平面直角坐標(biāo)系中,
已知點(diǎn),點(diǎn)在直線上,點(diǎn)滿足,,點(diǎn)的軌跡為曲線C.
(Ⅰ)求C的方程;
(Ⅱ)為C上動(dòng)點(diǎn),為C在點(diǎn)處的切線,求點(diǎn)到距離的最小值.
專題九
解析幾何
第二十七講
拋物線
答案部分
2019年
1.解析:由題意可得:,解得.故選D.
2.(I)由題意得,即p=2.
所以,拋物線的準(zhǔn)線方程為x=?1.
(Ⅱ)設(shè),重心.令,則.
由于直線AB過(guò)F,故直線AB方程為,代入,得
,
故,即,所以.
又由于及重心G在x軸上,故,得.
所以,直線AC方程為,得.
由于Q在焦點(diǎn)F的右側(cè),故.從而
.
令,則m>0,
.
當(dāng)時(shí),取得最小值,此時(shí)G(2,0).
3.解析(1)設(shè),則.
由于,所以切線DA的斜率為,故
,整理得
設(shè),同理可得.
故直線AB的方程為.
所以直線AB過(guò)定點(diǎn).
(2)由(1)得直線AB的方程為.
由,可得.
于是.
設(shè)M為線段AB的中點(diǎn),則.
由于,而,與向量平行,所以.解得t=0或.
當(dāng)=0時(shí),=2,所求圓的方程為;
當(dāng)時(shí),,所求圓的方程為.
2010-2018年
1.C【解析】由題意可知,如圖,又拋物線的定義得,所以
為等邊三角形,在三角形中,,,得,所以到的距離為等邊三角形中邊上的高,易知為.選C.
2.D【解析】易知拋物線的焦點(diǎn)為,設(shè),由軸得,代入拋物線方程得舍去),把代入曲線的,故選D.
3.B【解析】因?yàn)閽佄锞€的準(zhǔn)線方程為,,焦點(diǎn)坐標(biāo)為.
4.D
【解析】當(dāng)直線的斜率不存在時(shí),這樣的直線恰好有2條,即,所以;所以當(dāng)直線的斜率存在時(shí),這樣的直線有2條即可.設(shè),,
,則.又,
兩式相減得,.
設(shè)圓心為,則,因?yàn)橹本€與圓相切,
所以,解得,于是,,又,
即,所以,又,所以,選D.
5.C【解析】過(guò)點(diǎn)作交于點(diǎn),因?yàn)?,所以,又焦點(diǎn)到準(zhǔn)線的距離為4,所以.故選C.
6.D【解析】易知拋物線中,焦點(diǎn),直線的斜率,故直線的方程為,代入拋物線方程,整理得.
設(shè),則,由物線的定義可得弦長(zhǎng)
,結(jié)合圖象可得到直線的距離,
所以的面積.
7.D【解析】在拋物線的準(zhǔn)線上,.,,
設(shè)直線的方程為①,將①與聯(lián)立,
得②,則=,
即,解得或(舍去),
將代入①②解得,即,又,,故選D.
8.C【解析】,由拋物線的定義可得點(diǎn)的坐標(biāo),
的面積為.
9.C【解析】依題意可得AF所在直線方程為代入x2=4y得,
又|FM|:|MN|=(1-y):(1+y)=1:.
10.C【解析】設(shè)交的準(zhǔn)線
于
得:
11.D【解析】雙曲線:的離心率為2,所以
又漸近線方程為所以雙曲線的漸近線方程為
而拋物的焦點(diǎn)坐標(biāo)為所以有.
故選D.
12.C【解析】設(shè)拋物線的方程為,易知,即,
點(diǎn)在準(zhǔn)線上,到的距離為,所以面積為36,故選C.
13.【解析】由題意知,對(duì)于,當(dāng)時(shí),,由于被拋物線截得的線段長(zhǎng)為4,所以,所以,所以拋物線的焦點(diǎn)坐標(biāo)為.
14.【解析】的準(zhǔn)線方程為,又,所以必經(jīng)過(guò)雙曲線的左焦點(diǎn),所以,.
15.【解析】由正方形的定義可知BC=
CD,結(jié)合拋物線的定義得點(diǎn)D為拋物線的焦點(diǎn),所以,D,將點(diǎn)F的坐標(biāo)代入拋物線的方程得,變形得,
解得或(舍去),所以.
16.2,【解析】;準(zhǔn)線.
17.【解析】建立直角坐標(biāo)系,使拱橋的頂點(diǎn)O的坐標(biāo)為(0,0),設(shè)拋物線的方程為,與拋物線的交點(diǎn)為A、B,
根據(jù)題意知A(–2,–2),B(2,–2)
則有,
拋物線的解析式為
水位下降1米,則y=–3,此時(shí)有或
此時(shí)水面寬為米.
18.【解析】由題意可得的值為,B點(diǎn)坐標(biāo)為()所以點(diǎn)B到拋物線準(zhǔn)線的距離為.
19.【解析】(1)由題意得,的方程為.
設(shè),
由得.
,故.
所以.
由題設(shè)知,解得(舍去),.
因此的方程為.
(2)由(1)得的中點(diǎn)坐標(biāo)為,所以的垂直平分線方程為,
即.
設(shè)所求圓的圓心坐標(biāo)為,則
解得或
因此所求圓的方程為或.
20.【解析】(1)設(shè),,.
因?yàn)?,的中點(diǎn)在拋物線上,所以,為方程
即的兩個(gè)不同的實(shí)數(shù)根.
所以.
因此,垂直于軸.
(2)由(1)可知
所以,.
因此,的面積.
因?yàn)?,所以?/p>
因此,面積的取值范圍是.
21.【解析】(1)設(shè),,則,,,x1+x2=4,
于是直線的斜率.
(2)由,得.
設(shè),由題設(shè)知,解得,于是.
設(shè)直線的方程為,故線段的中點(diǎn)為,.
將代入得.
當(dāng),即時(shí),.
從而.
由題設(shè)知,即,解得.
所以直線AB的方程為.
22.【解析】(Ⅰ)設(shè)直線AP的斜率為,
,
因?yàn)?,所以直線AP斜率的取值范圍是。
(Ⅱ)聯(lián)立直線AP與BQ的方程
解得點(diǎn)Q的橫坐標(biāo)是
因?yàn)?/p>
==
=
=,
所以
=
令,
因?yàn)?/p>
,
所以在區(qū)間上單調(diào)遞增,上單調(diào)遞減,
因此當(dāng)時(shí),取得最大值.
23.【解析】(Ⅰ)由已知得,.
又為關(guān)于點(diǎn)的對(duì)稱點(diǎn),故,的方程為,
代入整理得,解得,,
因此.所以為的中點(diǎn),即.
(Ⅱ)直線與除以外沒(méi)有其它公共點(diǎn).理由如下:
直線的方程為,即.
代入得,解得,即直線與只有一個(gè)公共點(diǎn),所以除以外直線與沒(méi)有其它公共點(diǎn).
24.【解析】(Ⅰ)由題設(shè).設(shè),則,且
.
記過(guò)兩點(diǎn)的直線為,則的方程為.
(Ⅰ)由于在線段上,故.
記的斜率為,的斜率為,則
.
所以.
(Ⅱ)設(shè)與軸的交點(diǎn)為,
則.
由題設(shè)可得,所以(舍去),.
設(shè)滿足條件的的中點(diǎn)為.
當(dāng)與軸不垂直時(shí),由可得.
而,所以.
當(dāng)與軸垂直時(shí),與重合.所以所求軌跡方程為.
25.【解析】(Ⅰ)由題意得拋物線上點(diǎn)A到焦點(diǎn)F的距離等于點(diǎn)A到直線的距離.
由拋物線的第一得,即.
(Ⅱ)由(Ⅰ)得拋物線的方程為,可設(shè).
因?yàn)锳F不垂直于y軸,可設(shè)直線AF:,,由消去得
,故,所以.
又直線AB的斜率為,故直線FN的斜率為,
從而的直線FN:,直線BN:,
所以,
設(shè)M(,0),由A,M,N三點(diǎn)共線得:,
于是,經(jīng)檢驗(yàn),或滿足題意.
綜上,點(diǎn)M的橫坐標(biāo)的取值范圍是.
26.【解析】(Ⅰ)由題意可知,直線的斜率存在,故可設(shè)直線的方程為.
所以消去.整理得:.
因?yàn)橹本€與拋物線相切,所以,解得.
所以,即點(diǎn).設(shè)圓的圓心為,
點(diǎn)的坐標(biāo)為,由題意知,點(diǎn)關(guān)于直線對(duì)稱,
故有,解得.即點(diǎn).
(Ⅱ)由(Ⅰ)知,,
直線的方程為,
所以點(diǎn)到直線的距離為.
所以的面積為.
27.【解析】解法一:(Ⅰ)由拋物線的定義得.
因?yàn)椋?,解得?/p>
所以拋物線的方程為.
(Ⅱ)因?yàn)辄c(diǎn)在拋物線上,
所以,由拋物線的對(duì)稱性,不妨設(shè).
由,可得直線的方程為.
由,得,
解得或,從而.
又,
所以,,
所以,從而,這表明點(diǎn)到直線的距離相等,故以為圓心且與直線相切的圓必與直線相切.
解法二:(Ⅰ)同解法一.
(Ⅱ)設(shè)以點(diǎn)為圓心且與直線相切的圓的半徑為.
因?yàn)辄c(diǎn)在拋物線:上,
所以,由拋物線的對(duì)稱性,不妨設(shè).
由,可得直線的方程為.
由,得,
解得或,從而.
又,故直線的方程為,
從而.
又直線的方程為,
所以點(diǎn)到直線的距離.
這表明以點(diǎn)為圓心且與直線相切的圓必與直線相切.
28.【解析】(Ⅰ)由題意知,設(shè),則的中點(diǎn)為
因?yàn)?,由拋物線的定義可知,
解得或(舍去)
由,解得.所以拋物線的方程為.
(Ⅱ)(?。┯桑á瘢┲?,設(shè).
因?yàn)?,則,
由得,故,故直線的斜率
因?yàn)橹本€和直線平行,
設(shè)直線的方程為,代入拋物線的方程得,
由題意,得
設(shè),則
當(dāng)時(shí),,
可得直線的方程為,由,
整理得,直線恒過(guò)點(diǎn)
當(dāng)時(shí),直線的方程為,過(guò)點(diǎn),所以直線過(guò)定點(diǎn).
(ⅱ)由(?。┲本€過(guò)定點(diǎn),
所以。
設(shè)直線的方程為,因?yàn)辄c(diǎn)在直線上
故.設(shè),直線的方程為
由于,可得,代入拋物線的方程得
所以,可求得,
所以點(diǎn)到直線的距離為
==
則的面積,
當(dāng)且僅當(dāng)即時(shí)等號(hào)成立,
所以的面積的最小值為.
29.【解析】(Ⅰ)在,方程中,令,可得b=1,且得是上半橢圓
的左右頂點(diǎn),
設(shè)的半焦距為,由及,解得,所以,
(Ⅱ)由(Ⅰ)知,上半橢圓的方程為,
易知,直線與軸不重合也不垂直,設(shè)其方程為
代入的方程中,整理得:
(*)
設(shè)點(diǎn)的坐標(biāo),由韋達(dá)定理得
又,得,從而求得
所以點(diǎn)的坐標(biāo)為.
同理,由得點(diǎn)的坐標(biāo)為
,
,,即
,,解得
經(jīng)檢驗(yàn),符合題意,故直線的方程為
30.【解析】(Ⅰ)依題意,解得(負(fù)根舍去)
拋物線的方程為.
(Ⅱ)設(shè)點(diǎn),,,
由,即得.
拋物線在點(diǎn)處的切線的方程為,
即.
,
.
點(diǎn)在切線上,
.
①
同理,
.
②
綜合①、②得,點(diǎn)的坐標(biāo)都滿足方程
.
經(jīng)過(guò)兩點(diǎn)的直線是唯一的,
直線
的方程為,即.
(Ⅲ)由拋物線的定義可知,
所以
聯(lián)立,消去得,
當(dāng)時(shí),取得最小值為.
31.【解析】(Ⅰ)由對(duì)稱性知:是等腰直角,斜邊
點(diǎn)到準(zhǔn)線的距離
圓的方程為
(Ⅱ)由對(duì)稱性設(shè),則
點(diǎn)關(guān)于點(diǎn)對(duì)稱得:
得:,直線
切點(diǎn)
直線
坐標(biāo)原點(diǎn)到距離的比值為.
32.【解析】(Ⅰ)設(shè),由已知得,.
所以=,
=(0,),
=(,-2).
再由題意可知(+)?=0,
即(,)?(,-2)=0.
所以曲線C的方程式為.
(Ⅱ)設(shè)為曲線C:上一點(diǎn),因?yàn)?,所以的斜率為?/p>
因此直線的方程為,即.
2018海南高考結(jié)束后,考生及家長(zhǎng)最為關(guān)心的問(wèn)題就是“2018海南高考成績(jī)什么時(shí)候可以查詢?”。
提問(wèn)
問(wèn):2018海南高考成績(jī)什么時(shí)候可以查詢?
回答
2018吉林高考結(jié)束后,考生及家長(zhǎng)最為關(guān)心的問(wèn)題就是“2018吉林高考成績(jī)什么時(shí)候可以查詢?”。
提問(wèn)
問(wèn):2018吉林高考成績(jī)什么時(shí)候可以查詢?
回答
1、兩到三天,考志愿是分批次錄取的,本科和??频奶顖?bào)時(shí)間不同,甚至不同的本科批次都有不同的志愿填報(bào)時(shí)間。一般情況下都是一個(gè)批次錄取結(jié)束后才開(kāi)始進(jìn)行下一個(gè)錄取批次。所以考生一定要時(shí)刻關(guān)注高考志愿填報(bào)時(shí)間。
2、從每年的志愿填報(bào)時(shí)間上來(lái)看,一般高考結(jié)束后二十天左右成績(jī)就會(huì)公布,而成績(jī)公布幾天后就會(huì)開(kāi)始填報(bào)高考志愿了。去年大部分的省市的提前批和本科填報(bào)志愿時(shí)間都是從6月25號(hào)左右開(kāi)始的,而??浦驹柑顖?bào)時(shí)間則是比較晚,可能會(huì)在7月末8月初,也可能會(huì)在7月份,主要還是要看各省市的安排。
3、高考志愿填報(bào)時(shí)間每年都會(huì)根據(jù)高考錄取工作的實(shí)際情況來(lái)作出一些調(diào)整和變化,但是變化不會(huì)很大,考生想知道高考后多久填報(bào)志愿,也可以去本省市的考試院,參考一下去年的志愿填報(bào)時(shí)間。
(來(lái)源:文章屋網(wǎng) )
【導(dǎo)語(yǔ)】
吉林省2019年高考各類(lèi)考生報(bào)名總?cè)藬?shù)為162787人,今年全省共設(shè)59個(gè)考區(qū),151個(gè)考點(diǎn)。
在打擊考試作 弊,維護(hù)考試公平公正方面,吉林省教育廳主要采取了五項(xiàng)措施:一是全省公安、教育等部門(mén)聯(lián)合開(kāi)展打擊“助 考”、“替考”以及“銷(xiāo)售作 弊器材”的專項(xiàng)行動(dòng);二是對(duì)考點(diǎn)實(shí)施全方位的無(wú)線電作 弊信號(hào)偵測(cè)、壓制和干擾;三是在各考點(diǎn)配備警力,協(xié)助教育部門(mén)處理考試違法行為;四是選聘300多名省派巡視員,重點(diǎn)檢查考點(diǎn)、考場(chǎng)的考風(fēng)考紀(jì)情況;五是考試結(jié)束后,省教育考試院將對(duì)考場(chǎng)監(jiān)控錄像進(jìn)行全面回放檢查。
高考結(jié)束后,將立即進(jìn)入評(píng)卷環(huán)節(jié),預(yù)計(jì)將在6月24日左右公布考生成績(jī)和錄取最低控制分?jǐn)?shù)線。
為進(jìn)一步提高高考工作的透明度,打造吉林省陽(yáng)光高考品牌工程,今年我省繼續(xù)邀請(qǐng)媒體和部分考生家長(zhǎng)參觀吉林省國(guó)家教育考試考務(wù)指揮中心。
2、即將畢業(yè)的高三以為自己要離開(kāi)了地獄,卻不知他們離開(kāi)的是多少人想回去的天堂。
3、三年前的今天,懷揣著夢(mèng)想和不安走進(jìn)了考場(chǎng),用四套試卷結(jié)束了自己三年的奮斗,也結(jié)束了自己青春最美好的時(shí)代。
4、六月是一個(gè)傷感的季節(jié),高考結(jié)束,大學(xué)畢業(yè),注定都是離別。巨蟹果然情緒起伏大,一晚上都能起伏幾個(gè)來(lái)回,情感基調(diào)變了好幾下。
5、想問(wèn)一下同桌,還愿意和我坐在一起嗎?
6、每一個(gè)即將畢業(yè)高三黨都以為自己要離開(kāi)了地獄,殊不知他們離開(kāi)的是天堂。
7、那年錯(cuò)失高考,三年的辛苦耕耘付之東流。都說(shuō)沒(méi)有經(jīng)歷高考的人生不完美,可人生哪有那么多完美。
8、因?yàn)橐粋€(gè)優(yōu)秀的男生,我變得努力,雖然我現(xiàn)在是一名普通一本的學(xué)生,但是對(duì)我來(lái)說(shuō),已經(jīng)很好了。所以說(shuō),在高中時(shí)期有一個(gè)這樣的人,真的是很溫暖了。
9、很多事都不能去細(xì)想結(jié)果,你只要沒(méi)辜負(fù)這個(gè)過(guò)程就好,不要讓小事阻礙你前行的腳步,加油。
10、在好好的跟這些人鬧一鬧吧,可能有些人你已經(jīng)見(jiàn)過(guò)這輩子最后一面了。
11、高考那幾天,媽媽在家負(fù)責(zé)我的吃喝,爸爸負(fù)責(zé)接送我,平平淡淡,考完回家睡了一覺(jué),沒(méi)有想的那么轟轟烈烈,但特別幸福。
12、高考,一次一次的練兵,留下的是不變的夢(mèng)想。然后總想著高考之后表白,然后被拒絕。
13、有些人會(huì)在你認(rèn)為的,很平常的一次分別中,永遠(yuǎn)地退出你的人生。我高考以后,和很多以前的朋友,都見(jiàn)不上面了。
14、每天都會(huì)夢(mèng)見(jiàn)我去復(fù)讀后,人生的變化。
15、希望今年能跟高考有一個(gè)美好的回憶加油。
16、曾經(jīng)以為自己在高三的時(shí)候會(huì)來(lái)個(gè)一鳴驚人,誰(shuí)能想到進(jìn)入瓶頸期,被那些以前從來(lái)沒(méi)有放在眼里的人一個(gè)個(gè)超過(guò),自己只能偷偷憋住眼淚。
17、高考的時(shí)候覺(jué)得真真應(yīng)了那句話“初識(shí)不知曲中意,再聞已是曲中人”,那個(gè)時(shí)候看到別的學(xué)長(zhǎng)學(xué)姐們秉燈夜讀,覺(jué)得不理解自己做不到,等到自己的時(shí)候,自然而然就成為了她們?,F(xiàn)在回想還是覺(jué)得不夠努力,當(dāng)最后一個(gè)關(guān)燈的人的感覺(jué)應(yīng)該很爽吧!
18、在黑板上寫(xiě)上畢業(yè)感言,我寫(xiě)了:等到黑夜翻頁(yè)之后會(huì)是新的白晝。
19、真希望我也能像別人一樣配合這個(gè)主題回思自己,羨慕這些經(jīng)歷過(guò)的人,不管當(dāng)時(shí)是苦是累還是哭與笑,至少你們都有過(guò)!
20、高考那天,下很大很大的雨,我們要去別的學(xué)校考試。我們?cè)趯W(xué)校的很多人都沒(méi)有雨傘,大家想著怎么走去考場(chǎng)。然而下車(chē)之后看到老師、保安、警察舉著傘站成一條路,讓我們一個(gè)個(gè)穿過(guò)去。大雨滂沱,他們?cè)谟昀镎玖撕镁煤镁茫x謝他們那天的付出,很暖。
21、上了大學(xué),發(fā)現(xiàn)高考也并非像別人說(shuō)的那么重要,那么與眾不同。
22、高考是一個(gè)即將到來(lái)的將來(lái)式,不得不說(shuō)的是高中這三年來(lái)過(guò)的真的不怎么樣,但也不得不說(shuō)這三年,真的有太多的感動(dòng)和收獲,在這三年的每一天里,無(wú)時(shí)無(wú)刻不在幻想著高考,可是到高考時(shí)卻又有些害怕,不是努力不夠,而是分離,在高考結(jié)束后,你會(huì)發(fā)現(xiàn)并沒(méi)有你想象的快樂(lè),甚至有些傷感,因?yàn)?,這次的考試可能成為你們真正的散伙飯。
23、高考前幾個(gè)星期被人誤解,對(duì)自己說(shuō):不要在乎別人的看法,做好自己就好。高考是高中三年來(lái)考得最好的一次。
24、離開(kāi)之后,才明白此時(shí)是最好的時(shí)光。
25、這是我高考的作文題,我和高考,把自己的心路寫(xiě)了一遍,差點(diǎn)在考場(chǎng)哭了。
26、高考前滿教室的人低頭一句話不說(shuō)的看書(shū),高考后回教室空蕩蕩的心里突然空了。
27、三年前對(duì)口升學(xué)和高考同一天,七天后專升本和高考一天考試,過(guò)去沒(méi)有經(jīng)歷過(guò)的總會(huì)在未來(lái)等你。
28、高考結(jié)束后,那天下雨,有很多人沒(méi)去畢業(yè)聚餐。我也沒(méi)去。和同學(xué)去看了場(chǎng)電影?,F(xiàn)在想起來(lái)還是覺(jué)得很遺憾。三年,沒(méi)能一起聚聚,畢業(yè)后,大家各奔東西,能全部都來(lái)一起聚聚應(yīng)該很難了吧。
伴隨著六月高考的結(jié)束,我們接下來(lái)的重點(diǎn)將在放在高考志愿的填報(bào)以及高考分?jǐn)?shù)的查詢時(shí)間了,不知關(guān)于寧夏的高考查分時(shí)間你們了解多少呢?以下是小編為大家準(zhǔn)備了2021寧夏地區(qū)高考查分時(shí)間以及寧夏高考志愿填報(bào)時(shí)間,歡迎參閱。
2021寧夏地區(qū)高考查分時(shí)間預(yù)計(jì)6月23日公布
各批次錄取控制分?jǐn)?shù)線和考生成績(jī),
7月上旬開(kāi)展招生錄取工作。
寧夏高考志愿填報(bào)時(shí)間答:高考志愿在不同的省份是有不同的填報(bào)時(shí)間的,所以考生要時(shí)刻關(guān)注本省高考志愿填報(bào)時(shí)間,以免因?yàn)闀r(shí)間的原因,而耽誤志愿的報(bào)考。
另外,高考志愿是分批次錄取的,本科和??频奶顖?bào)時(shí)間不同,甚至不同的本科批次都有不同的志愿填報(bào)時(shí)間。一般情況下都是一個(gè)批次錄取結(jié)束后才開(kāi)始進(jìn)行下一個(gè)錄取批次。所以考生一定要時(shí)刻關(guān)注高考志愿填報(bào)時(shí)間。
從每年的志愿填報(bào)時(shí)間上來(lái)看,一般高考結(jié)束后二十天左右成績(jī)就會(huì)公布,而成績(jī)公布幾天后就會(huì)開(kāi)始填報(bào)高考志愿了。去年大部分的省市的提前批和本科填報(bào)志愿時(shí)間都是從6月25號(hào)左右開(kāi)始的,而??浦驹柑顖?bào)時(shí)間則是比較晚,可能會(huì)在7月末8月初,也可能會(huì)在7月份,主要還是要看各省市的安排。
高考志愿填報(bào)時(shí)間每年都會(huì)根據(jù)高考錄取工作的實(shí)際情況來(lái)作出一些調(diào)整和變化,但是變化不會(huì)很大,考生想知道高考后多久填報(bào)志愿,也可以去本省市的考試院,參考一下去年的志愿填報(bào)時(shí)間。
志愿填報(bào)準(zhǔn)備1.正確估分:分?jǐn)?shù)出來(lái)前對(duì)一下答案,對(duì)自己有一個(gè)大概的估分;
2.提前參考往年錄取分?jǐn)?shù)線:預(yù)估分?jǐn)?shù)后,接下來(lái)要做的事情就是大面積搜索數(shù)據(jù);
3.明確各項(xiàng)重要的時(shí)間節(jié)點(diǎn):控制分?jǐn)?shù)線、各批次志愿填報(bào)及錄取結(jié)果、征集志愿等;
4.研讀報(bào)考院校的招生章程:招生章程是高校有關(guān)招生方案、招生計(jì)劃和錄取規(guī)則等的政策性承諾,了解學(xué)校的招生章程對(duì)科學(xué)填報(bào)志愿有很大的指導(dǎo)作用。
高考志愿填報(bào)前的注意事項(xiàng)1、官網(wǎng)填報(bào)
考生成績(jī)、位次號(hào)、錄取結(jié)果等都可以從各省高考志愿填報(bào)網(wǎng)站查到。注意辨別各類(lèi)招生信息,謹(jǐn)防上當(dāng)受騙。
2、查清條件
填報(bào)前務(wù)必查清自己的選考科目與高校的專業(yè)選考科目要求是否符合,仔細(xì)閱讀擬報(bào)高校今年的招生章程,精準(zhǔn)了解擬報(bào)專業(yè)對(duì)體檢、外語(yǔ)語(yǔ)種、學(xué)考等級(jí)、綜合素質(zhì)評(píng)價(jià)、單科成績(jī)等有無(wú)特殊要求,看清招生專業(yè)的層次是本科還是???一般學(xué)制不同),學(xué)校性質(zhì)是民辦還是公辦,凡填報(bào)獨(dú)立學(xué)院(如“同濟(jì)大學(xué)寧夏學(xué)院”等高校)、民辦高校以及中外合作專業(yè)的考生需查看了解學(xué)費(fèi),充分考慮家庭經(jīng)濟(jì)承受能力。凡填報(bào)不符高校招生的限制條件,會(huì)被退檔。專業(yè)平行志愿的錄取過(guò)程中一旦被退檔只能等待下一段的填報(bào),沒(méi)有補(bǔ)報(bào)機(jī)會(huì)!
3、熟悉政策
對(duì)本省的高考政策有整體的把握,如所在省份有幾個(gè)批次志愿,每個(gè)批次可以填報(bào)幾所志愿學(xué)校,報(bào)考幾個(gè)專業(yè)等。
4、收集信息
往往有考生解答的方法和思路都正確,但是因?yàn)榇中拇笠?,中間步驟計(jì)算出錯(cuò),導(dǎo)致失分。
5、準(zhǔn)確定位
英語(yǔ)填空、寫(xiě)作題中,少數(shù)考生容易犯不區(qū)分大小寫(xiě)的錯(cuò)誤,在評(píng)分時(shí)很可能就分居一個(gè)檔次的位和最低位。
6、初選志愿
大致劃定一些在省內(nèi)有招生計(jì)劃的院校,認(rèn)真閱讀招生章程,比較各院校間專業(yè)的招生人數(shù)、錄取分?jǐn)?shù)等,選擇和自己興趣、分?jǐn)?shù)、批次相符合的院校。
7、模擬填報(bào)
《自治區(qū)2019年普通高等學(xué)校招生工作規(guī)定》(下稱《招生規(guī)定》)正式公布?!墩猩?guī)定》共14部分84條,從報(bào)名、考生電子檔案、思想政治品德考核、身體健康狀況檢查、考試與閱卷、招生章程、分省(區(qū)、市)分專業(yè)招生計(jì)劃、錄取批次設(shè)置與志愿填報(bào)、錄取、信息公開(kāi)公示、招生管理職責(zé)、招生經(jīng)費(fèi)、對(duì)違反規(guī)定行為的處理及附則等方面作出明確規(guī)定。主要內(nèi)容如下:
一是高考于6月7日至9日進(jìn)行。自治區(qū)2019年不組織高考外語(yǔ)口語(yǔ)測(cè)試。
二是高考成績(jī)、分?jǐn)?shù)線公布和志愿填報(bào)。
根據(jù)教育部有關(guān)規(guī)定,計(jì)劃于6月24日公布高考成績(jī)和位次;6月26日公布各批次投檔控制分?jǐn)?shù)線;7月1日,考生在新疆招生網(wǎng)“普通高考網(wǎng)上志愿填報(bào)系統(tǒng)”完成志愿填報(bào)。
為更好給考生提供志愿填報(bào)服務(wù),增加考生志愿滿足率。在貧困專項(xiàng)、南疆單列和對(duì)口援疆本科一批次,本科一批次、本科二批次錄取結(jié)束后,各安排一次征集志愿;在高職(???批次錄取結(jié)束后,安排兩次征集志愿。自治區(qū)教育考試院根據(jù)高校未完成招生計(jì)劃的情況,組織尚未被錄取的考生在網(wǎng)上填報(bào)征集志愿,投檔時(shí)以本次征集志愿信息為依據(jù)進(jìn)行投檔。從本科一批次征集志愿起,考生可同時(shí)修改填報(bào)后續(xù)批次志愿。
三是我區(qū)普通高校招生錄取批次為8個(gè)。
2019年我區(qū)錄取分8個(gè)批次,依次是:(1)本科提前批次:軍警公安類(lèi)、藝術(shù)類(lèi)、體育類(lèi)和其它提前單獨(dú)錄取的本科院校(專業(yè));(2)貧困專項(xiàng)、南疆單列、對(duì)口援疆計(jì)劃本科一批次;(3)自主選拔錄取批次;(4)本科一批次:經(jīng)批準(zhǔn)參加本批次錄取的本科院校(專業(yè))。(5)貧困專項(xiàng)、南疆單列、對(duì)口援疆計(jì)劃本科二批次;(6)本科二批次:經(jīng)批準(zhǔn)參加本批次錄取的本科院校(專業(yè));(7)高職(專科)提前批次:藝術(shù)類(lèi)、體育類(lèi)、軍警公安類(lèi)、南疆單列和其它提前單獨(dú)錄取的高職(???院校(專業(yè));(8)高職(???批次:本科院校的??茖I(yè)、高職(???院校。
四是增加消防救援人員及其子女高考優(yōu)待政策。
按照《關(guān)于做好國(guó)家綜合性消防救援隊(duì)伍人員及其子女教育優(yōu)待工作的通知》(應(yīng)急〔2019〕37號(hào))的有關(guān)規(guī)定,增加消防救援人員及其子女報(bào)考普通高校的相關(guān)優(yōu)待政策。