公務(wù)員期刊網(wǎng) 精選范文 大數(shù)據(jù)分析戰(zhàn)略范文

大數(shù)據(jù)分析戰(zhàn)略精選(九篇)

前言:一篇好文章的誕生,需要你不斷地搜集資料、整理思路,本站小編為你收集了豐富的大數(shù)據(jù)分析戰(zhàn)略主題范文,僅供參考,歡迎閱讀并收藏。

大數(shù)據(jù)分析戰(zhàn)略

第1篇:大數(shù)據(jù)分析戰(zhàn)略范文

關(guān)鍵詞:大數(shù)據(jù) 存儲(chǔ)行業(yè)環(huán)境 戰(zhàn)略分析

引言

大數(shù)據(jù)時(shí)代,呈爆炸性增長(zhǎng)的數(shù)據(jù)規(guī)模,可以直接決定企業(yè)發(fā)展的未來(lái)。一方面,數(shù)據(jù)爆炸性增長(zhǎng)可能給企業(yè)帶來(lái)問(wèn)題和隱患。比如,如何保證數(shù)據(jù)的絕對(duì)安全和可靠?隨著越來(lái)越多的應(yīng)用信息轉(zhuǎn)變?yōu)閿?shù)據(jù)進(jìn)行存儲(chǔ)和處理,數(shù)據(jù)的重要性和價(jià)值也越來(lái)越高,這也使得企業(yè)難以容忍數(shù)據(jù)的損壞或丟失。數(shù)據(jù)信息的毀壞和丟失會(huì)給企業(yè)帶來(lái)不可估量的損失(Patterson,D.A.,2002)。數(shù)據(jù)的重要性和價(jià)值對(duì)于諸如廣電行業(yè)企業(yè)這種有海量數(shù)據(jù)存儲(chǔ)需求的客戶來(lái)說(shuō),體現(xiàn)得更為明顯。另一方面,大數(shù)據(jù)也可以為企業(yè)帶來(lái)正面收益,比如從價(jià)值密度低的海量數(shù)據(jù)中,通過(guò)數(shù)據(jù)分析和數(shù)據(jù)挖掘技術(shù),迅速提取更有價(jià)值的數(shù)據(jù),用于提高企業(yè)自身的核心競(jìng)爭(zhēng)力。在這一背景下,一些存儲(chǔ)行業(yè)企業(yè)紛紛展開(kāi)兼并收購(gòu),提升綜合能力。如存儲(chǔ)行業(yè)領(lǐng)導(dǎo)廠商VMware公司(NYSE:VMW)先后收購(gòu)了開(kāi)源Java開(kāi)發(fā)商SpringSource、關(guān)系型和非關(guān)系型分布式數(shù)據(jù)管理系統(tǒng)廠商GemStone、開(kāi)源軟件開(kāi)發(fā)商WaveMaker、企業(yè)社交協(xié)作解決方案提供商Socialcast、PPT在線制作服務(wù)提供商 SlideRocket,并對(duì)其進(jìn)行整合,成為提供大數(shù)據(jù)解決方案的服務(wù)提供商。IBM也在大數(shù)據(jù)領(lǐng)域展開(kāi)了連環(huán)收購(gòu),先后收購(gòu)銷售數(shù)據(jù)分析公司Varicent和企業(yè)搜索和導(dǎo)航軟件提供商Vivisimo,將大數(shù)據(jù)的搜索和分析擴(kuò)展到Hadoop之外的傳統(tǒng)遺留應(yīng)用和數(shù)據(jù)倉(cāng)庫(kù)。

存儲(chǔ)行業(yè)產(chǎn)業(yè)環(huán)境現(xiàn)狀

產(chǎn)業(yè)環(huán)境分析體現(xiàn)了產(chǎn)業(yè)內(nèi)的競(jìng)爭(zhēng)激烈程度和企業(yè)的最終獲利潛力。波特認(rèn)為五種力量狀況及其綜合強(qiáng)度決定行業(yè)環(huán)境:新進(jìn)入者的威脅、供方的討價(jià)還價(jià)能力、買方的討價(jià)還價(jià)能力、替代品的威脅及現(xiàn)有競(jìng)爭(zhēng)者之間的競(jìng)爭(zhēng)。就存儲(chǔ)行業(yè)而言,本文用五力模型對(duì)其行業(yè)環(huán)境進(jìn)行分析(見(jiàn)圖1):

(一)新進(jìn)入者的威脅

目前我國(guó)存儲(chǔ)產(chǎn)業(yè)的潛在競(jìng)爭(zhēng)者主要來(lái)自于IBM、EMC和VMware等技術(shù)和資金實(shí)力雄厚的跨國(guó)公司,基于核心傳統(tǒng)的存儲(chǔ)設(shè)備技術(shù)能力,通過(guò)內(nèi)部研發(fā)和兼并收購(gòu)等已經(jīng)具備為客戶提供綜合化存儲(chǔ)解決方案的能力。另外,華為、藍(lán)汛科技、永新視博、同洲、索貝、新奧特、數(shù)碼視訊等公司也紛紛涉足大數(shù)據(jù)領(lǐng)域,推出了針對(duì)廣電行業(yè)應(yīng)用的產(chǎn)品與解決方案。以上行業(yè)新進(jìn)入者對(duì)現(xiàn)有存儲(chǔ)企業(yè)帶來(lái)了較高威脅,雖然存儲(chǔ)產(chǎn)業(yè)具有一定的技術(shù)和資金壁壘,對(duì)于中小企業(yè)進(jìn)入障礙較高,但對(duì)于這些技術(shù)研發(fā)具有優(yōu)勢(shì)的企業(yè),這些壁壘不足以形成障礙。所以,新進(jìn)入者威脅是需要充分考慮的要素。為獲得可持續(xù)發(fā)展,現(xiàn)有存儲(chǔ)企業(yè)必須提升研發(fā)能力,以客戶需求為中心,結(jié)合云計(jì)算為用戶提供更多創(chuàng)新的業(yè)務(wù)體驗(yàn),還可通過(guò)構(gòu)建業(yè)務(wù)研發(fā)云平臺(tái),降低新業(yè)務(wù)開(kāi)發(fā)成本,加快新業(yè)務(wù)推出速度,為贏得市場(chǎng)先機(jī)奠定基礎(chǔ)。

(二)替代產(chǎn)品的威脅

存儲(chǔ)行業(yè)企業(yè)提供的是存儲(chǔ)設(shè)備產(chǎn)品和專業(yè)化服務(wù),諸如廣電和證券行業(yè)等具有海量數(shù)據(jù)存儲(chǔ)需求的企業(yè),由于技術(shù)的局限很難選擇自營(yíng)的形式為自身提品和服務(wù)。當(dāng)數(shù)據(jù)量達(dá)到一定程度時(shí),只能選擇專業(yè)從事存儲(chǔ)的企業(yè)提品或服務(wù)??梢?jiàn),存儲(chǔ)行業(yè)企業(yè)的替代性較低。

(三)供應(yīng)商的討價(jià)還價(jià)能力

存儲(chǔ)行業(yè)的供應(yīng)商包括存儲(chǔ)基礎(chǔ)零部件設(shè)備供應(yīng)商和數(shù)據(jù)管理服務(wù)供應(yīng)商,大部分是IT制造行業(yè)企業(yè),供應(yīng)商的討價(jià)還價(jià)能力決定于其規(guī)模、技術(shù)實(shí)力和專業(yè)性。如果業(yè)務(wù)量大、技術(shù)能力強(qiáng)、專業(yè)服務(wù)水準(zhǔn)高,討價(jià)還價(jià)能力就相對(duì)較強(qiáng)。

(四)買方的討價(jià)還價(jià)能力

中國(guó)存儲(chǔ)產(chǎn)業(yè)集中度較高,能提供海量數(shù)據(jù)存儲(chǔ)設(shè)備和服務(wù)的國(guó)內(nèi)企業(yè)并不多。相對(duì)于國(guó)外企業(yè)來(lái)講,國(guó)內(nèi)企業(yè)的產(chǎn)品和服務(wù)具有價(jià)格優(yōu)勢(shì),國(guó)外企業(yè)提供專業(yè)化產(chǎn)品和服務(wù)水準(zhǔn)較高,客戶方的討價(jià)還價(jià)能力不高,一般根據(jù)成本節(jié)約的目標(biāo)選擇國(guó)內(nèi)或國(guó)外企業(yè)的產(chǎn)品。

(五)現(xiàn)有競(jìng)爭(zhēng)者之間的競(jìng)爭(zhēng)

存儲(chǔ)行業(yè)競(jìng)爭(zhēng)雖然激烈,但是主要依靠品牌、本地化支持、技術(shù)和性價(jià)比等因素的良性競(jìng)爭(zhēng)。一方面,在高端市場(chǎng),國(guó)外廠商依靠品牌和技術(shù)優(yōu)勢(shì)占據(jù)了一部分對(duì)價(jià)格不敏感的大客戶,但是由于其本地化支持程度較低,后期發(fā)生的服務(wù)成本較高,很多企業(yè)選擇國(guó)內(nèi)存儲(chǔ)企業(yè)的產(chǎn)品和服務(wù)。一部分國(guó)內(nèi)存儲(chǔ)行業(yè)企業(yè)依靠強(qiáng)大的本地化支持,依靠性能和價(jià)格兩方面競(jìng)爭(zhēng);另一部分企業(yè)通過(guò)拓展增值型服務(wù)和提升服務(wù)水準(zhǔn),拓展新服務(wù)幫助客戶企業(yè)提升競(jìng)爭(zhēng)力并創(chuàng)造價(jià)值來(lái)獲取競(jìng)爭(zhēng)地位。通過(guò)以上分析,可見(jiàn)存儲(chǔ)行業(yè)是個(gè)具有吸引力的朝陽(yáng)產(chǎn)業(yè),服務(wù)市場(chǎng)的需求和利潤(rùn)空間較大。

大數(shù)據(jù)時(shí)代存儲(chǔ)行業(yè)的機(jī)遇與挑戰(zhàn)

大數(shù)據(jù)時(shí)代的來(lái)臨也將會(huì)給廣電、銀行、證券等有海量數(shù)據(jù)存儲(chǔ)需求的行業(yè)帶來(lái)巨大的價(jià)值和影響,這些存儲(chǔ)產(chǎn)業(yè)鏈下游的客戶企業(yè)必定會(huì)更加依賴于大數(shù)據(jù)的發(fā)展,這為存儲(chǔ)行業(yè)提供了大量的潛在需求和發(fā)展機(jī)遇。另一方面存儲(chǔ)行業(yè)企業(yè)更應(yīng)該明確客戶需求和清楚自身的優(yōu)勢(shì)和劣勢(shì),確保從容應(yīng)對(duì)大數(shù)據(jù)時(shí)代的來(lái)臨,并充分利用大數(shù)據(jù)時(shí)展帶來(lái)的能量,提升和深耕自身能力,建立可持續(xù)發(fā)展的競(jìng)爭(zhēng)優(yōu)勢(shì)(張帥,2000)。以新聞廣電這一典型存儲(chǔ)行業(yè)客戶為例,存在的挑戰(zhàn)主要表現(xiàn)在:第一,高性能和低延時(shí)。信息流、工作流的整合對(duì)性能要求日益提高。數(shù)據(jù)傳輸?shù)膶?shí)時(shí)性要求高,如節(jié)目播出流暢、不丟幀,要求數(shù)據(jù)必須在限定時(shí)間以限定的形式和流量提供;第二,大容量和高可靠性。行業(yè)的數(shù)據(jù)存儲(chǔ)若以音頻視頻流為主,往往一個(gè)文件即高達(dá)數(shù)十GB,清晰度提高,使得數(shù)據(jù)量大幅增長(zhǎng),另外數(shù)據(jù)(音視頻資料)這種核心資源,具有珍貴的歷史意義和保留價(jià)值,若發(fā)生丟失會(huì)給電視臺(tái)、網(wǎng)絡(luò)公司帶來(lái)巨大損失;第三,節(jié)約成本。由于設(shè)備和服務(wù)的分散采購(gòu),給客戶方帶來(lái)了額外的交易成本支出,如何為客戶節(jié)約交易流程復(fù)雜帶來(lái)的成本,提升綜合服務(wù)能力是存儲(chǔ)行業(yè)企業(yè)面臨的又一挑戰(zhàn)。

大數(shù)據(jù)時(shí)代存儲(chǔ)行業(yè)發(fā)展戰(zhàn)略

(一)推進(jìn)增值服務(wù)管理,從存儲(chǔ)設(shè)備提供商向數(shù)據(jù)解決方案的服務(wù)提供商轉(zhuǎn)型

在大數(shù)據(jù)時(shí)代背景下,客戶需求和科技發(fā)展相互結(jié)合,相互促進(jìn),一些客戶自身具備豐富的業(yè)務(wù)類型和應(yīng)用場(chǎng)景,具備豐富的實(shí)戰(zhàn)經(jīng)驗(yàn),可以為大數(shù)據(jù)的方案實(shí)施提供寶貴的信息基礎(chǔ);而大數(shù)據(jù)領(lǐng)域的科技發(fā)展則可以為客戶企業(yè)提供高效、安全、合理的技術(shù)平臺(tái),最大程度滿足企業(yè)需求。例如,廣電行業(yè)對(duì)大數(shù)據(jù)應(yīng)用存在著諸多顯見(jiàn)或潛在需求,伴隨著大數(shù)據(jù)技術(shù)的飛速發(fā)展,廣電行業(yè)的大數(shù)據(jù)應(yīng)用也必將隨之興起。在廣電行業(yè)內(nèi)部,大部分電臺(tái)、電視臺(tái)都已經(jīng)完成了數(shù)字化改造,并開(kāi)始實(shí)施包括生產(chǎn)、辦公、網(wǎng)絡(luò)集成一體的全臺(tái)網(wǎng)絡(luò)建設(shè)。企業(yè)需要的不僅僅是能存儲(chǔ)海量數(shù)據(jù)的高端存儲(chǔ)設(shè)備,更需要滿足終端綜合需求的數(shù)據(jù)管理解決方案,這要求存儲(chǔ)企業(yè)能夠提品+服務(wù)的“交鑰匙”工程,從存儲(chǔ)設(shè)備提供商向數(shù)據(jù)解決方案的服務(wù)提供商轉(zhuǎn)型。這種轉(zhuǎn)型要求存儲(chǔ)企業(yè)具備較高的綜合需求管理能力,在面對(duì)不同客戶的多級(jí)多域綜合需求時(shí),能迅速響應(yīng)分解到企業(yè)內(nèi)部和二級(jí)、三級(jí)供應(yīng)商,再進(jìn)一步整合成定制化的解決方案交遞客戶??梢?jiàn)培育企業(yè)的供應(yīng)商管理和客戶關(guān)系管理能力是成為數(shù)據(jù)解決方案的服務(wù)提供商的基礎(chǔ)(陳向東、王曉方,2011)。

(二)采用科技前置的營(yíng)銷策略,提升數(shù)據(jù)整合能力

以市場(chǎng)需求為導(dǎo)向,強(qiáng)化技術(shù)創(chuàng)新所獲得的競(jìng)爭(zhēng)優(yōu)勢(shì),實(shí)現(xiàn)增值營(yíng)銷。為使存儲(chǔ)企業(yè)高端客戶和產(chǎn)品市場(chǎng)呈現(xiàn)出強(qiáng)勁增長(zhǎng)態(tài)勢(shì),必須采取科研前置的技術(shù)營(yíng)銷策略,這也是大客戶營(yíng)銷的基礎(chǔ)所在。大客戶代表著前向產(chǎn)業(yè)的拉動(dòng)者,公司需堅(jiān)持技術(shù)領(lǐng)先,緊緊跟隨前項(xiàng)產(chǎn)業(yè)的技術(shù)進(jìn)步,如云計(jì)算、云平臺(tái)和活性存儲(chǔ)等,采取合作開(kāi)發(fā)、單獨(dú)研制等方式不斷創(chuàng)新產(chǎn)品、創(chuàng)新技術(shù),并針對(duì)不同使用條件和環(huán)境,為顧客進(jìn)行合理數(shù)據(jù)存儲(chǔ)方案設(shè)計(jì),以滿足個(gè)性化需求。一方面,更敏銳地把握技術(shù)發(fā)展趨勢(shì)和客戶的最新需求;另一方面,保持向高端客戶和新的產(chǎn)品服務(wù)模式拓進(jìn),把知識(shí)營(yíng)銷運(yùn)用于存儲(chǔ)企業(yè)的經(jīng)營(yíng)管理,是對(duì)傳統(tǒng)設(shè)備制造型存儲(chǔ)企業(yè)的改造升級(jí),構(gòu)建強(qiáng)勢(shì)存儲(chǔ)企業(yè)品牌的長(zhǎng)期競(jìng)爭(zhēng)優(yōu)勢(shì),其主旨是企業(yè)不僅要能夠?yàn)榭蛻籼峁┴S富的產(chǎn)品、協(xié)助數(shù)據(jù)管理,更重要的是能夠針對(duì)用戶應(yīng)用環(huán)境研發(fā),提供有針對(duì)性的優(yōu)化解決方案。

(三)推進(jìn)產(chǎn)業(yè)聯(lián)盟和培育存儲(chǔ)產(chǎn)業(yè)鏈,構(gòu)建全球化網(wǎng)絡(luò)

一方面,在提升技術(shù)研發(fā)能力的同時(shí),積極與全球各地的研究機(jī)構(gòu)開(kāi)展人才交流和技術(shù)合作;積極開(kāi)展供應(yīng)商參與的、科研院所聯(lián)合研發(fā),跨企業(yè)、跨產(chǎn)業(yè)的技術(shù)研發(fā)聯(lián)盟;另一方面,建立多方合作平臺(tái),建立以綜合服務(wù)集成商為主導(dǎo)的產(chǎn)業(yè)價(jià)值網(wǎng),以建立穩(wěn)定持續(xù)的業(yè)務(wù)關(guān)系為目標(biāo),由專人或?qū)m?xiàng)小組直接與目標(biāo)客戶溝通,為其提供個(gè)性化服務(wù)。基于品牌、技術(shù)、制造和服務(wù)積累力量,作為國(guó)際化的 “四輪驅(qū)動(dòng)”,推動(dòng)中國(guó)存儲(chǔ)企業(yè)的國(guó)際化進(jìn)程。無(wú)論是現(xiàn)在還是未來(lái),品牌、技術(shù)、服務(wù)和制造都是全球存儲(chǔ)市場(chǎng)的角力點(diǎn)。存儲(chǔ)行業(yè)企業(yè)應(yīng)盡快完成從產(chǎn)品輸出到以技術(shù)、服務(wù)輸出和品牌輸出的轉(zhuǎn)變,極大地提高產(chǎn)品的供應(yīng)能力和服務(wù)能力?;谝陨险归_(kāi)國(guó)際市場(chǎng)布局,面對(duì)復(fù)雜陌生的海外市場(chǎng),還需要建立本土化的供應(yīng)網(wǎng)絡(luò),與當(dāng)?shù)毓?yīng)商合作,在構(gòu)建渠道網(wǎng)絡(luò)的同時(shí),了解和熟悉當(dāng)?shù)厥袌?chǎng)。隨著國(guó)際市場(chǎng)業(yè)務(wù)增長(zhǎng)以及銷售渠道和服務(wù)網(wǎng)絡(luò)的完善,提供與之匹配的本地化服務(wù)支持,與國(guó)際存儲(chǔ)企業(yè)競(jìng)爭(zhēng)。

參考文獻(xiàn):

1.Patterson,D.A.2002.Availability and maintainability performance: New focus for a new century. Key note speech at FAST'02

2.2011年存儲(chǔ)行業(yè)十大發(fā)展趨勢(shì)預(yù)測(cè)[J].微電腦世界,2011(2)

3.邁克爾·波特.競(jìng)爭(zhēng)優(yōu)勢(shì)[M].華夏出版社,1985

4.張帥.存儲(chǔ)行業(yè)的先鋒—美國(guó)EMC公司[J].中國(guó)科技信息,2000(24)

5.存儲(chǔ)行業(yè)從品質(zhì)競(jìng)爭(zhēng)轉(zhuǎn)向品位競(jìng)爭(zhēng)[J].計(jì)算機(jī)與網(wǎng)絡(luò),2006(13)

6.陳向東,王曉方.創(chuàng)意產(chǎn)業(yè)廣電行業(yè)國(guó)際競(jìng)爭(zhēng)力的比較分析—基于中國(guó)和歐洲的對(duì)比[J].現(xiàn)代商業(yè),2011(17)

第2篇:大數(shù)據(jù)分析戰(zhàn)略范文

隨著互聯(lián)網(wǎng)科技日益成熟,各種類型的數(shù)據(jù)增長(zhǎng)將會(huì)超越歷史上任何一個(gè)時(shí)期。用戶想要從這龐大的數(shù)據(jù)庫(kù)中提取對(duì)自己有用的信息,就離不開(kāi)大數(shù)據(jù)分析技術(shù)和工具。中國(guó)有句老話:“工欲善其事,必須利其器!”可見(jiàn),一個(gè)好的工具不僅可以使我們的工作事半功倍,也可以讓我們?cè)诟?jìng)爭(zhēng)日益激烈的云計(jì)算時(shí)代,充分挖掘大數(shù)據(jù)價(jià)值,并及時(shí)調(diào)整戰(zhàn)略方向。

在本文中,作者整理了中國(guó)境內(nèi)在大數(shù)據(jù)分析領(lǐng)域最具話語(yǔ)權(quán)的企業(yè),它們有的是計(jì)算機(jī)或者互聯(lián)網(wǎng)領(lǐng)域的巨頭,有的則是剛剛創(chuàng)辦不久的初創(chuàng)企業(yè)。但它們有一個(gè)共同點(diǎn),那就是它們都看到了大數(shù)據(jù)分析技術(shù)帶來(lái)的大機(jī)會(huì),于是毫不猶豫地挺進(jìn)了數(shù)據(jù)分析領(lǐng)域。(如表單所示)

通過(guò)表單,可以了解到相應(yīng)廠商備受青睞的大數(shù)據(jù)分析產(chǎn)品。眾所周知,在大數(shù)據(jù)分析領(lǐng)域,當(dāng)家花旦非Hadoop莫屬,Hadoop已被公認(rèn)為是新一代的大數(shù)據(jù)處理平臺(tái),IBM、Intel、Microsoft、 Oracle以及EMC都紛紛投入了Hadoop的懷抱。對(duì)于大數(shù)據(jù)來(lái)說(shuō),最重要的還是對(duì)于數(shù)據(jù)的分析,從里面尋找有價(jià)值的數(shù)據(jù)幫助企業(yè)作出更好的商業(yè)決策。Hadoop和MapReduce等開(kāi)源工具則使企業(yè)能夠以一種全新的方式來(lái)管理和跟蹤大數(shù)據(jù)。對(duì)于中小企業(yè)而言,鑒于IT預(yù)算的考慮,大多都是從開(kāi)源的大數(shù)據(jù)分析工具著手,此時(shí)Hadoop就是首選。

當(dāng)前,大數(shù)據(jù)分析主要集中在商業(yè)智能、預(yù)測(cè)分析、數(shù)據(jù)挖掘和統(tǒng)計(jì)分析等方面。據(jù)Bain and Company報(bào)告顯示,那些使用大數(shù)據(jù)分析的公司的領(lǐng)導(dǎo)者們要遠(yuǎn)遠(yuǎn)比不使用大數(shù)據(jù)的公司領(lǐng)導(dǎo)者有優(yōu)勢(shì),他們能夠比普通領(lǐng)導(dǎo)者快出五倍的速度進(jìn)行決策,并且這些決策往往都是正確的。

隨著IT和互聯(lián)網(wǎng)巨頭們不斷攻破大數(shù)據(jù)分析領(lǐng)域的各種難題,投放到市場(chǎng)的產(chǎn)品種類越來(lái)越繁多,那么企業(yè)要如何選擇更適合自己的分析產(chǎn)品呢?以下是筆者總結(jié)的選型方案:首先要求企業(yè)像剝洋蔥一樣層層剝開(kāi),依靠他們有良好關(guān)系的供應(yīng)商,要求查看他們大數(shù)據(jù)分析平臺(tái)的演示;其次推薦企業(yè)也要學(xué)習(xí)研究業(yè)界其它廠商的案例使用情況;還有企業(yè)也應(yīng)依靠?jī)?nèi)部的 IT 部門及更有技術(shù)悟性的員工,來(lái)幫助做一些甄選;但最重要的是企業(yè)應(yīng)該清楚什么是真正的需求,供應(yīng)商的產(chǎn)品如何能滿足這些需求,畢竟理解業(yè)務(wù)需求比擁有出色的技術(shù)更重要。

隨著企業(yè)開(kāi)始利用大數(shù)據(jù),我們每天都會(huì)看到大數(shù)據(jù)新的奇妙的應(yīng)用,幫助人們真正從中獲益。大數(shù)據(jù)的應(yīng)用已廣泛深入我們生活的方方面面,涵蓋醫(yī)療、交通、金融、教育、體育、零售等各行各業(yè)。因此,大數(shù)據(jù)的分析方法在大數(shù)據(jù)領(lǐng)域就顯得尤為重要,可以說(shuō)是決定最終信息是否有價(jià)值的決定性因素。當(dāng)下,我國(guó)大數(shù)據(jù)技術(shù)仍處于起步階段,進(jìn)一步地開(kāi)發(fā)以完善大數(shù)據(jù)分析技術(shù)仍舊是大數(shù)據(jù)領(lǐng)域的熱點(diǎn)。

中國(guó)大數(shù)據(jù)分析廠商TOP50排行榜

分項(xiàng)得分(10)

排名 廠商 綜合評(píng)分(10) 創(chuàng)新能力 服務(wù)能力 解決方案 市場(chǎng)影響力

(35%) (20%) (30%) (15%)

1 IBM 9.1 10 8.5 8.5 9

2 Oracle 8.7 9 8 8.5 9

3 Google 8.6 9 8 8.5 8.5

4 Amazon 8.5 9 8 8.5 8

5 HP 8.4 8.5 8.5 8.5 8

6 SAP 8.2 9 8 7.5 8

7 Intel 8.1 9 8 7.5 7.5

8 Teradata 8.0 8.5 8 7.5 8

9 Microsoft 7.9 8 7.5 8 8

10 阿里 7.7 8.5 7 7 8

11 EMC 7.6 8.5 7.5 7.5 6

12 百度 7.5 8.5 5.5 7.5 7.5

13 Cloudera 7.4 7.5 8 7.5 6

14 雅虎 7.2 8.5 7 6 7

15 Splunk 7.1 8.5 7.5 6 5.5

16 騰訊 7.0 7 6 7 8

17 Dell 6.6 7 6.5 7 5

18 Opera Solutions 6.3 7 5.5 6.5 5

19 Mu Sigma 6.2 7 5 6 6

20 Fusion-io 6.1 7 5.5 5.5 6

21 1010data 6.0 6.5 6 5 6.5

22 SAS 5.9 7 4.5 5.5 6

23 Twitter 5.8 5 6 6 7

24 LinkedIn 5.7 6 4.5 6.5 5

25 華為 5.6 5 5.5 6 6

26 淘寶 5.5 6.5 4 6.5 3

27 用友 5.4 6 4.5 5.5 5

28 曙光 5.3 6 4.5 5.5 4

29 東軟 5.2 6 5.5 4.5 4

30 MapR 5.1 5.5 6 4.5 4

31 金蝶 5.0 5.5 5 4 5.5

32 Alpine 4.9 5.5 5 4.5 4

33 高德 4.8 5.5 6 3 5

34 Fujitsu 4.7 5 5.5 4 4.5

35 華院數(shù)云 4.6 5 5 4 4.5

36 博康智能 4.5 5 4 4.5 4

37 九次方金融數(shù)據(jù) 4.4 4.5 5 4 4

38 永洪科技 4.3 4 5.5 4 4

39 集奧聚合 4.2 4 4 4 5

40 國(guó)雙科技 4.1 4 3.5 4.5 4

41 百分點(diǎn) 4.0 3.5 5 4 3.5

42 榮科 3.9 3 5 4 3.5

43 博雅立方 3.8 3.5 4 4 4

44 億贊普 3.7 3 3.5 4.5 4

45 InsideSales 3.7 3 4 4 4

46 眾志和達(dá) 3.6 4 4 3 3.5

47 穎源科技 3.5 3 4 4 3

48 星環(huán)科技 3.4 3 3.5 4 3

49 拓爾思 3.3 3.5 3 3.5 3

50 國(guó)云數(shù)據(jù) 3.2 3 3 3.5 3.5

代表產(chǎn)品

InfoSphere BigInsights

Oracle Big Data Appliance

BigQuery

Kinesis

Vertica

HANA

Hadoop發(fā)行版

AsterData

SQL Server

采云間

GreenPlum

百度統(tǒng)計(jì)

Cloudera Apache Hadoop

Genome

Splunk Analytics for Hadoop

騰訊云分析

Big Data Retention

Opera Solutions

Mu Sigma大數(shù)據(jù)分析

Fusion ioMemory平臺(tái)

1010data大數(shù)據(jù)分析平臺(tái)

SAS Visual Analytics

Storm

LinkedIn數(shù)據(jù)分析模型

FusionInsight

知數(shù)寶

UAP平臺(tái)

曙光XData大數(shù)據(jù)一體機(jī)

東軟經(jīng)營(yíng)分析系統(tǒng)

Drill

金蝶KBI

Alpine Miner

高德地圖

Fujitsu M10

Hadoop+Postgresql架構(gòu)

博康智云大數(shù)據(jù)一體機(jī)

九次方大數(shù)據(jù)分析平臺(tái)

Yonghong Data Mart

DataQuate

Web Dissector

百分點(diǎn)數(shù)據(jù)管家

醫(yī)療大數(shù)據(jù)分析平臺(tái)

cubesearch平臺(tái)

億贊普大數(shù)據(jù)分析平臺(tái)

InsideSales大數(shù)據(jù)平臺(tái)

SureSave BDP1000

股市情緒分析軟件

Transwarp Data Hub

第3篇:大數(shù)據(jù)分析戰(zhàn)略范文

關(guān)鍵詞:大數(shù)據(jù);大數(shù)據(jù)工程;意識(shí)形態(tài)安全

一、大數(shù)據(jù)對(duì)意識(shí)形態(tài)領(lǐng)域產(chǎn)生革命性影響

馬克思在很早的時(shí)候便注意到了科學(xué)技術(shù)同意識(shí)形態(tài)之間的密切關(guān)系。他在《資本論》中論述了自然科學(xué)通過(guò)技術(shù)與人的社會(huì)生活、特別是精神生活的內(nèi)在聯(lián)系,認(rèn)為:“技術(shù)會(huì)揭示人對(duì)自然的能動(dòng)關(guān)系,人的生活的直接生產(chǎn)過(guò)程,以及人的社會(huì)生活條件和由此產(chǎn)生的精神觀念的直接生產(chǎn)過(guò)程,”根據(jù)的觀點(diǎn),雖然科學(xué)技術(shù)本身不屬于意識(shí)形態(tài)范疇,可是科學(xué)技術(shù)的發(fā)展對(duì)意識(shí)形態(tài)的變化具有深刻影響。大數(shù)據(jù)不僅是指體量巨大、結(jié)構(gòu)復(fù)雜、類型多樣、高速變化、真實(shí)質(zhì)差的數(shù)據(jù)集合,而且也是一種現(xiàn)代技術(shù),其對(duì)意識(shí)形態(tài)領(lǐng)域產(chǎn)生了一系列革命f生影響。

1.大數(shù)據(jù)技術(shù)成為把握受眾思想動(dòng)態(tài)的重要手段

近年來(lái),伴隨著互聯(lián)網(wǎng)、物聯(lián)網(wǎng)、三網(wǎng)融合、云計(jì)算等IT技術(shù)與數(shù)字電子技術(shù)、無(wú)線技術(shù)及光纖通信技術(shù)等通信技術(shù)的快速發(fā)展,數(shù)據(jù)呈“井噴”狀態(tài),這其中就包含著大量反映受眾思想動(dòng)態(tài)的數(shù)據(jù)。意識(shí)形態(tài)工作者運(yùn)用數(shù)據(jù)采集技術(shù)全方位大縱深地獲取源于不同信息載體的反映受眾思想動(dòng)態(tài)的數(shù)據(jù),運(yùn)用數(shù)據(jù)存儲(chǔ)技術(shù),將類型多樣、結(jié)構(gòu)復(fù)雜的數(shù)據(jù)轉(zhuǎn)換為單一的或是便于處理的結(jié)構(gòu),運(yùn)用數(shù)據(jù)清洗技術(shù)對(duì)內(nèi)容殘缺、重復(fù)冗余、過(guò)時(shí)失效以及帶有隨機(jī)噪聲、孤立噪聲等問(wèn)題的數(shù)據(jù)進(jìn)行清洗,運(yùn)用數(shù)據(jù)分析技術(shù)對(duì)清洗后的可信賴數(shù)據(jù)進(jìn)行關(guān)聯(lián)分析,在此基礎(chǔ)上建立反映受眾思想動(dòng)態(tài)的模型,進(jìn)而達(dá)成對(duì)受眾思想動(dòng)態(tài)的準(zhǔn)確認(rèn)知和把握。很明顯,大數(shù)據(jù)技術(shù)成為了意識(shí)形態(tài)工作者把握受眾思想動(dòng)態(tài)的手段。

2.大數(shù)據(jù)思維改變了意識(shí)形態(tài)傳統(tǒng)決策模式

大數(shù)據(jù)不僅是指體量巨大、類型多樣、高速變化的復(fù)雜數(shù)據(jù)集合,而且也是一種全新的思維方式。大數(shù)據(jù)思維可以被理解是一種在匯聚整合數(shù)據(jù)、分析處理數(shù)據(jù)的基礎(chǔ)上進(jìn)行決策的思維,是一種基于客觀事實(shí)而少憑借主觀經(jīng)驗(yàn)進(jìn)行決策的思維模式。意識(shí)形態(tài)傳統(tǒng)決策模式是指意識(shí)形態(tài)工作者依靠自己的價(jià)值觀念、思想方法、學(xué)識(shí)才能、經(jīng)驗(yàn)教訓(xùn)等,在對(duì)以往進(jìn)行概括總結(jié)及對(duì)未來(lái)開(kāi)展綜合分析的基礎(chǔ)上,展開(kāi)決策活動(dòng)的思維模式??茖W(xué)決策并不絕對(duì)排斥經(jīng)驗(yàn),但決策的“個(gè)人權(quán)威性”與“個(gè)人經(jīng)驗(yàn)性”相結(jié)合,往往可能導(dǎo)致決策的局限性和狹隘性,發(fā)生決策失誤。意識(shí)形態(tài)工作者在大數(shù)據(jù)思維的指引下,深入挖掘反映受眾思想動(dòng)態(tài)的數(shù)據(jù),對(duì)其進(jìn)行關(guān)聯(lián)分析,在此基礎(chǔ)上制訂意識(shí)形態(tài)工作方案,這有助于提高意識(shí)形態(tài)工作方案的科學(xué)性和可行性,提升意識(shí)形態(tài)工作效度,增強(qiáng)意識(shí)形態(tài)治理能力。顯而易見(jiàn),大數(shù)據(jù)思維將在一定程度上形成對(duì)意識(shí)形態(tài)傳統(tǒng)決策模式的替代。由此,大數(shù)據(jù)思維改變了意識(shí)形態(tài)傳統(tǒng)決策模式。

3.大數(shù)據(jù)標(biāo)準(zhǔn)影響意識(shí)形態(tài)宣傳部門的權(quán)威

可以說(shuō),大數(shù)據(jù)的使用是一把雙刃劍,一方面為科學(xué)研究、教育治理等方面帶來(lái)了重大機(jī)遇,另一方面對(duì)社會(huì)其他領(lǐng)域帶來(lái)了嚴(yán)峻挑戰(zhàn)。比如,大數(shù)據(jù)使用存在泄露隱私的隱患;“大數(shù)據(jù)的異構(gòu)性、規(guī)模、及時(shí)性、復(fù)雜性和隱私問(wèn)題從各個(gè)環(huán)節(jié)阻礙了數(shù)據(jù)價(jià)值的創(chuàng)造。”尤其值得注意的是,數(shù)據(jù)標(biāo)準(zhǔn)(數(shù)據(jù)搜集標(biāo)準(zhǔn)、數(shù)據(jù)計(jì)算標(biāo)準(zhǔn)、數(shù)據(jù)分析標(biāo)準(zhǔn)等)的不一致,直接導(dǎo)致了數(shù)據(jù)結(jié)論的不一甚至迥異。當(dāng)前,由于數(shù)據(jù)的采集標(biāo)準(zhǔn)不同、分析標(biāo)準(zhǔn)相異、計(jì)算標(biāo)準(zhǔn)有別,導(dǎo)致社交媒體、智庫(kù)、互聯(lián)網(wǎng)公司等的數(shù)據(jù)分析報(bào)告同意識(shí)形態(tài)宣傳部門所的結(jié)論相去甚遠(yuǎn),甚至相悖。這在一定程度上造成意識(shí)形態(tài)領(lǐng)域噪音不斷、余音不絕,消解了“權(quán)威”與“元敘事”,影響到了意識(shí)形態(tài)宣傳部門的權(quán)威。

4.大數(shù)據(jù)處理將增加意識(shí)形態(tài)工作部門的工作成本

大數(shù)據(jù)時(shí)代,各種信息載體每天都會(huì)產(chǎn)生大量結(jié)構(gòu)復(fù)雜、體量巨大、時(shí)效性強(qiáng)的反映受眾思想動(dòng)態(tài)的數(shù)據(jù),對(duì)這些數(shù)據(jù)進(jìn)行挖掘和存儲(chǔ)等是把握受眾思想動(dòng)態(tài)的重要前提。但是,傳統(tǒng)的數(shù)據(jù)挖掘、數(shù)據(jù)存儲(chǔ)技術(shù)難以處理大量結(jié)構(gòu)復(fù)雜、體量巨大、時(shí)效性強(qiáng)的反映受眾思想動(dòng)態(tài)的數(shù)據(jù)。具體而言:在數(shù)據(jù)存儲(chǔ)方面,“傳統(tǒng)的數(shù)據(jù)庫(kù)追求高度的數(shù)據(jù)一致性和容錯(cuò)性,缺乏較強(qiáng)的拓展性和較好的系統(tǒng)可用性,不能有效存儲(chǔ)視頻、音頻等非結(jié)構(gòu)化和半結(jié)構(gòu)化的數(shù)據(jù)。目前,數(shù)據(jù)存儲(chǔ)能力的增長(zhǎng)遠(yuǎn)遠(yuǎn)趕不上數(shù)據(jù)的增長(zhǎng),設(shè)計(jì)最合理的分層存儲(chǔ)架構(gòu)成為信息系統(tǒng)的關(guān)鍵”。在數(shù)據(jù)挖掘方面,“從數(shù)據(jù)庫(kù)的觀點(diǎn)看,挖掘算法的有效性和可伸縮性是實(shí)現(xiàn)數(shù)據(jù)挖掘的關(guān)鍵,而現(xiàn)有的算法往往適合常駐內(nèi)存的小數(shù)據(jù)集,大型數(shù)據(jù)庫(kù)中的數(shù)據(jù)可能無(wú)法同時(shí)導(dǎo)入內(nèi)存,隨著數(shù)據(jù)規(guī)模的不斷增大,算法的效率逐漸成為數(shù)據(jù)分析流程的瓶頸。要想徹底改變被動(dòng)局面,需要對(duì)現(xiàn)有架構(gòu)、組織體系、資源配置和權(quán)力結(jié)構(gòu)進(jìn)行重組?!睘榇耍瑧?yīng)當(dāng)對(duì)已有的數(shù)據(jù)技術(shù)進(jìn)行升級(jí)。毋庸置疑,升級(jí)數(shù)據(jù)存儲(chǔ)技術(shù)、數(shù)據(jù)挖掘技術(shù)等,是一項(xiàng)復(fù)雜的系統(tǒng)性工作,需要意識(shí)形態(tài)工作部門投入資金、制定科學(xué)合理政策等。這將在一定程度上增加意識(shí)形態(tài)工作部門的工作成本。

5.大數(shù)據(jù)治理將為維護(hù)自媒體空間的意識(shí)形態(tài)安全創(chuàng)造條件

大數(shù)據(jù)時(shí)代,具有平民化與大眾化特征的自媒體,改變了固有的信息生產(chǎn)模式,重塑了信息生產(chǎn)主體,變革了信息生產(chǎn)中的精英主義傳統(tǒng),激發(fā)了大眾壓抑已久的創(chuàng)造欲望。大眾化的話語(yǔ)形態(tài)因此而大量生成,在一定程度上消解了“權(quán)威”與“元敘事”,造成了自媒體空間主流與非主流觀點(diǎn)并存,紅色、黑色、黃色信息同在,正面報(bào)道與負(fù)面謠言同臺(tái)競(jìng)技。這在較大程度上擠壓了主流意識(shí)形態(tài)的傳播空間,削弱了主流意識(shí)形態(tài)話語(yǔ)的輻射力,“同時(shí)也消解了主流話語(yǔ)的公信力?!焙翢o(wú)疑問(wèn),自媒體空間的話語(yǔ)治理首先應(yīng)當(dāng)是法律治理,但與現(xiàn)實(shí)公共空間不同的是,自媒體空間是話語(yǔ)與技術(shù)相融合的空間,所以,有必要運(yùn)用大數(shù)據(jù)技術(shù)開(kāi)展自媒體空間的話語(yǔ)治理。通過(guò)大數(shù)據(jù)采集技術(shù)對(duì)自媒體空間的話語(yǔ)進(jìn)行大規(guī)模實(shí)證采集,運(yùn)用大數(shù)據(jù)分析技術(shù)分析并揭示自媒體空間話語(yǔ)方式多層面特征,在此基礎(chǔ)上構(gòu)建自媒體空間話語(yǔ)監(jiān)測(cè)數(shù)據(jù)庫(kù),開(kāi)發(fā)自媒體空間話語(yǔ)監(jiān)測(cè)預(yù)警平臺(tái),進(jìn)而為規(guī)范自媒體空間的話語(yǔ)傳播,提升自媒體空間的話語(yǔ)傳播質(zhì)量,維護(hù)自媒體空間的意識(shí)形態(tài)安全創(chuàng)造條件。

二、大數(shù)據(jù)成為西方國(guó)家進(jìn)行意識(shí)形態(tài)滲透的重要工具

鑒于大數(shù)據(jù)對(duì)意識(shí)形態(tài)領(lǐng)域所產(chǎn)生的一系列革命性影響,西方國(guó)家非常重視大數(shù)據(jù)的發(fā)展,研發(fā)出了許多先進(jìn)的大數(shù)據(jù)技術(shù)。一方面運(yùn)用先進(jìn)的大數(shù)據(jù)技術(shù)維護(hù)本國(guó)意識(shí)形態(tài)安全,另一方面利用其在大數(shù)據(jù)方面的技術(shù)優(yōu)勢(shì),對(duì)外進(jìn)行意識(shí)形態(tài)滲透。為確保上述目標(biāo)得到切實(shí)貫徹執(zhí)行,西方國(guó)家從宏觀戰(zhàn)略層面制定戰(zhàn)略規(guī)劃,指引大數(shù)據(jù)發(fā)展進(jìn)程,從微觀政策層面建立保障體系,確保戰(zhàn)略目標(biāo)得以落地。

1.制定戰(zhàn)略規(guī)劃,指引大數(shù)據(jù)發(fā)展進(jìn)程

以美國(guó)為首的西方發(fā)達(dá)國(guó)家非常重視大數(shù)據(jù)的作用,通過(guò)制定戰(zhàn)略規(guī)劃,指引大數(shù)據(jù)發(fā)展進(jìn)程。2011年總統(tǒng)科技顧問(wèn)委員會(huì)提出建議,認(rèn)為大數(shù)據(jù)具有重要戰(zhàn)略意義,但聯(lián)邦政府在大數(shù)據(jù)相關(guān)技術(shù)方面的投入不足。作為回應(yīng),美國(guó)白宮科學(xué)和技術(shù)政策辦公室(OS.TP)建立了大數(shù)據(jù)高級(jí)監(jiān)督組以協(xié)調(diào)和擴(kuò)大政府對(duì)該領(lǐng)域的投資,并牽頭編制了《大數(shù)據(jù)研究與發(fā)展計(jì)劃》(以下簡(jiǎn)稱《計(jì)劃》)。2012年3月29日,《計(jì)劃》正式對(duì)外,標(biāo)志著美國(guó)率先將大數(shù)據(jù)上升為國(guó)家戰(zhàn)略。再如澳大利亞,2012年10月,澳大利亞政府《澳大利亞公共服務(wù)信息與通信技術(shù)戰(zhàn)略2012-2015》,強(qiáng)調(diào)應(yīng)增強(qiáng)政府機(jī)構(gòu)的數(shù)據(jù)分析能力從而實(shí)現(xiàn)更好的服務(wù)傳遞和更科學(xué)的決策,并將制定一份大數(shù)據(jù)戰(zhàn)略作為戰(zhàn)略執(zhí)行計(jì)劃之一。2013年2月,澳大利亞政府信息管理辦公室(AGIMO)成立了跨部門工作組――“大數(shù)據(jù)工作組”,啟動(dòng)了《公共服務(wù)大數(shù)據(jù)戰(zhàn)略》(以下簡(jiǎn)稱《戰(zhàn)略》)制定工作,并于2013年8月正式對(duì)外。

2.建立保障體系,確保戰(zhàn)略目標(biāo)得以落地

為確保大數(shù)據(jù)戰(zhàn)略得以順利實(shí)施,西方發(fā)達(dá)國(guó)家建立了一系列保障體系。一是技術(shù)支撐:美國(guó)高校和研究機(jī)構(gòu)專注于大數(shù)據(jù)理論研究,對(duì)關(guān)鍵性技術(shù)進(jìn)行前沿性研究,在數(shù)據(jù)存儲(chǔ)、數(shù)據(jù)分析、數(shù)據(jù)安全等方面研發(fā)出了大量實(shí)用技術(shù)。二是資金保障:“法國(guó)政府宣布將在2013年投入1150萬(wàn)歐元,用于7個(gè)大數(shù)據(jù)市場(chǎng)研發(fā)項(xiàng)目,旨在通過(guò)試點(diǎn)探索,促進(jìn)法國(guó)大數(shù)據(jù)發(fā)展?!?012年3月,美國(guó)政府啟動(dòng)了2億美元的注資計(jì)劃,意在提升從大量數(shù)據(jù)中“沙里淘金”能力。三是人才支持:美國(guó)《大數(shù)據(jù)研究與發(fā)展計(jì)劃》的一個(gè)重要目標(biāo)是擴(kuò)大從事大數(shù)據(jù)技術(shù)開(kāi)發(fā)和應(yīng)用的人員數(shù)量。通過(guò)國(guó)家科學(xué)基金會(huì),鼓勵(lì)研究性大學(xué)設(shè)立跨學(xué)科的學(xué)位項(xiàng)目,為培養(yǎng)下一代數(shù)據(jù)科學(xué)家和工程師做準(zhǔn)備,并設(shè)立培訓(xùn)基金支持對(duì)大學(xué)生進(jìn)行相關(guān)技術(shù)培訓(xùn),召集各個(gè)學(xué)科的研究。此外,美國(guó)的一些大學(xué)通過(guò)設(shè)置大數(shù)據(jù)相關(guān)專業(yè),培養(yǎng)大數(shù)據(jù)人才。四是政策扶持:(1)數(shù)據(jù)共享政策:2010年12月,美國(guó)聯(lián)邦政府宣布“云優(yōu)先”政策,規(guī)定所有新建的政府信息系統(tǒng)必須優(yōu)先考慮云平臺(tái)。應(yīng)用云平臺(tái)為實(shí)現(xiàn)政府部門間共享數(shù)據(jù)提供了便利,因此,“云優(yōu)先”政策的實(shí)質(zhì)便是數(shù)據(jù)共享政策?!胺▏?guó)制定了公共數(shù)據(jù)開(kāi)放和共享路線圖,其核心內(nèi)容為:更廣泛便捷開(kāi)放公共數(shù)據(jù),促進(jìn)創(chuàng)新性再利用,為數(shù)據(jù)開(kāi)放共享創(chuàng)造文化氛圍并改進(jìn)現(xiàn)有法規(guī)框架等。”(2)數(shù)據(jù)開(kāi)放政策:2009年1月,奧巴馬總統(tǒng)簽署了《開(kāi)放透明政府備忘錄》,自此,美國(guó)聯(lián)邦政府開(kāi)始向公眾大量開(kāi)放公共數(shù)據(jù),并把許多數(shù)據(jù)公布在中央信息交換庫(kù)――Data.gov網(wǎng)站上,便于民眾查閱;加拿大實(shí)施了開(kāi)放地理空間數(shù)據(jù)政策;2013年5月9日,奧巴馬總統(tǒng)簽署開(kāi)放數(shù)據(jù)政策(Open Data Policy);法國(guó)制定了Open Data Proxi.ma Mobile政策。(3)數(shù)據(jù)安全政策:澳大利亞政府于2012年7月了《信息安全管理指導(dǎo)方針:整合性信息的管理》為海量數(shù)據(jù)整合中所涉及的安全風(fēng)險(xiǎn)提供了最佳管理實(shí)踐指導(dǎo)@?!皻W盟也一直非常重視公民隱私權(quán)的保護(hù),歐盟的數(shù)據(jù)保護(hù)指令實(shí)行于1995年,當(dāng)時(shí)互聯(lián)網(wǎng)的使用并不普遍。但目前為止,27個(gè)成員國(guó)對(duì)該法令的認(rèn)知各不相同,因此在推行過(guò)程中產(chǎn)生了很大分歧。2012年1月,歐盟委員會(huì)提出全面改革1995年的數(shù)據(jù)保護(hù)指令,以加強(qiáng)網(wǎng)絡(luò)隱私權(quán)利的保護(hù)和促進(jìn)歐洲的數(shù)字經(jīng)濟(jì)。”

有了促進(jìn)大數(shù)據(jù)發(fā)展的頂層設(shè)計(jì)及保障體系,西方國(guó)家得以將大數(shù)據(jù)技術(shù)成功地運(yùn)用到意識(shí)形態(tài)領(lǐng)域。一方面,西方國(guó)家的意識(shí)形態(tài)工作者運(yùn)用數(shù)據(jù)分析技術(shù)自動(dòng)分析出本國(guó)信息載體所蘊(yùn)含的意見(jiàn)傾向,從而達(dá)成對(duì)本國(guó)受眾思想動(dòng)態(tài)的認(rèn)知和把握,在此基礎(chǔ)上制定相應(yīng)的工作內(nèi)容與議程,維護(hù)本國(guó)意識(shí)形態(tài)安全。另一方面,西方國(guó)家利用其在大數(shù)據(jù)方面的技術(shù)優(yōu)勢(shì),對(duì)包括中國(guó)在內(nèi)的社會(huì)主義國(guó)家進(jìn)行意識(shí)形態(tài)滲透,企圖通過(guò)這種柔性方式,達(dá)到不戰(zhàn)而屈人之兵的目的,維護(hù)其所謂的國(guó)家利益。大數(shù)據(jù)在西方國(guó)家對(duì)華進(jìn)行意識(shí)形態(tài)滲透方面的具體應(yīng)用如下:首先,運(yùn)用數(shù)據(jù)采集技術(shù)收集反映我國(guó)輿情動(dòng)態(tài)的數(shù)據(jù)。2013年6月,CIA前雇員愛(ài)德華?斯諾登透過(guò)美國(guó)《華盛頓郵報(bào)》與英國(guó)《衛(wèi)報(bào)》向外界披露,美國(guó)國(guó)家安全局(NSA)在2007年啟動(dòng)了代號(hào)為“棱鏡”(PRISM)的絕密電子監(jiān)聽(tīng)計(jì)劃。在此項(xiàng)計(jì)劃中,NSA要求美國(guó)電信巨頭威瑞森公司(Vefizon)每天上交數(shù)百萬(wàn)用戶的通話記錄。聯(lián)邦調(diào)查局與NSA均可直接進(jìn)入微軟、雅虎、蘋(píng)果、Palmlk、谷歌、AOL等網(wǎng)絡(luò)巨頭的服務(wù)器,通過(guò)數(shù)據(jù)傳感體系、智能識(shí)別體系等數(shù)據(jù)采集技術(shù)對(duì)中國(guó)的聊天記錄、文件、視頻、音頻等上網(wǎng)信息中的反映我國(guó)受眾思想動(dòng)態(tài)的數(shù)據(jù)進(jìn)行識(shí)別、定位和接入,進(jìn)而獲取了大量關(guān)于我國(guó)輿情動(dòng)態(tài)的數(shù)據(jù)。其次,運(yùn)用數(shù)據(jù)分析技術(shù)對(duì)涉輿數(shù)據(jù)進(jìn)行分析。運(yùn)用在線數(shù)據(jù)分析、預(yù)測(cè)性數(shù)據(jù)分析、數(shù)據(jù)網(wǎng)絡(luò)挖掘、特異群組挖掘、圖挖掘等數(shù)據(jù)分析技術(shù),對(duì)涉輿數(shù)據(jù)進(jìn)行關(guān)聯(lián)分析,進(jìn)而精準(zhǔn)地把握我國(guó)的輿情動(dòng)態(tài)。第三,通過(guò)數(shù)據(jù)載體對(duì)華進(jìn)行意識(shí)形態(tài)滲透。在把握我國(guó)輿情動(dòng)態(tài)的基礎(chǔ)上,打造契合我國(guó)受眾接受心理的話語(yǔ)體系,通過(guò)手機(jī)、社交平臺(tái)(skype、YouTube、Facebook)、數(shù)據(jù)庫(kù)等數(shù)據(jù)載體對(duì)華進(jìn)行意識(shí)形態(tài)滲透。第四,改進(jìn)意識(shí)形態(tài)滲透方式。運(yùn)用情感語(yǔ)義分析、網(wǎng)絡(luò)行為分析等數(shù)據(jù)分析技術(shù),自動(dòng)分析出我國(guó)受眾對(duì)西方主流意識(shí)形態(tài)的認(rèn)同情況,以進(jìn)一步改進(jìn)意識(shí)形態(tài)滲透方式,增強(qiáng)對(duì)華進(jìn)行意識(shí)形態(tài)滲透的實(shí)效性。

西方國(guó)家之所以將大數(shù)據(jù)作為對(duì)華進(jìn)行意識(shí)形態(tài)滲透的重要手段,是出于以下兩方面的考慮:一是大數(shù)據(jù)的運(yùn)用減少了意識(shí)形態(tài)滲透阻力。大數(shù)據(jù)時(shí)代來(lái)臨前,西方國(guó)家以教育文化交流和培訓(xùn)項(xiàng)目為載體,以經(jīng)濟(jì)、技術(shù)交往為途徑,以廣播、電臺(tái)為平臺(tái)對(duì)華進(jìn)行意識(shí)形態(tài)滲透。這種裸的滲透方式,在一定程度上引發(fā)了我國(guó)受眾的反感,意識(shí)形態(tài)滲透的有效性因此而大打折扣,達(dá)不到其預(yù)設(shè)的滲透目標(biāo)。通過(guò)運(yùn)用大數(shù)據(jù)技術(shù),廣泛搜集反映我國(guó)受眾心理需求、接受特點(diǎn)、思維習(xí)慣的數(shù)據(jù),達(dá)成對(duì)我國(guó)受眾接收特點(diǎn)的準(zhǔn)確認(rèn)知,通過(guò)打造契合我國(guó)受眾接受心理的話語(yǔ)體系,進(jìn)行意識(shí)形態(tài)滲透,從而在很大程度上減少了對(duì)華進(jìn)行意識(shí)形態(tài)滲透的阻力,增強(qiáng)了意識(shí)形態(tài)滲透的實(shí)效性。二是西方國(guó)家具有先進(jìn)的大數(shù)據(jù)預(yù)測(cè)技術(shù),為把握對(duì)華進(jìn)行意識(shí)形態(tài)滲透的對(duì)象和時(shí)機(jī)創(chuàng)造了條件。牛津大學(xué)教授維克托?邁爾一舍恩伯格指出:“大數(shù)據(jù)的核心就是預(yù)測(cè),不是要教機(jī)器像人一樣思考,而是要把數(shù)學(xué)計(jì)算運(yùn)用到海量數(shù)據(jù)上,來(lái)預(yù)測(cè)事情發(fā)生的可能性”。正因?yàn)槿绱?,以美?guó)為首的西方國(guó)家斥巨資研發(fā)出了許多先進(jìn)的大數(shù)據(jù)預(yù)測(cè)技術(shù)。在全方位、大縱深地獲取反映我國(guó)受眾思想動(dòng)態(tài)的數(shù)據(jù)的基礎(chǔ)上,充分運(yùn)用大數(shù)據(jù)預(yù)測(cè)技術(shù),精準(zhǔn)預(yù)測(cè)出我國(guó)輿情的發(fā)展趨勢(shì),進(jìn)而準(zhǔn)確把握意識(shí)形態(tài)滲透的對(duì)象和時(shí)機(jī)。

三、實(shí)施國(guó)家大數(shù)據(jù)工程是維護(hù)國(guó)家意識(shí)形態(tài)安全的重要保障

大數(shù)據(jù)時(shí)代,實(shí)施國(guó)家大數(shù)據(jù)工程是應(yīng)對(duì)我國(guó)意識(shí)形態(tài)安全面臨的系列挑戰(zhàn)的重要舉措。

1.從宏觀戰(zhàn)略層面把握實(shí)施國(guó)家大數(shù)據(jù)工程的原則

一是普惠原則。要加快網(wǎng)絡(luò)基礎(chǔ)設(shè)施建設(shè)步伐,讓信息時(shí)代的缺席者有機(jī)會(huì)通過(guò)網(wǎng)絡(luò)平臺(tái)表情達(dá)意,為意識(shí)形態(tài)工作者挖掘“沉沒(méi)的聲音”,科學(xué)制訂網(wǎng)絡(luò)意識(shí)形態(tài)工作方案創(chuàng)造條件。二是技術(shù)優(yōu)先原則。無(wú)論是從類型多樣、體量巨大的數(shù)據(jù)集中抽取出正確、真實(shí)的涉輿數(shù)據(jù),還是對(duì)涉輿數(shù)據(jù)進(jìn)行存儲(chǔ)和關(guān)聯(lián)分析,對(duì)關(guān)鍵、敏感涉輿數(shù)據(jù)進(jìn)行保護(hù),都離不開(kāi)先進(jìn)的大數(shù)據(jù)技術(shù)做支撐。因此,必須秉持技術(shù)優(yōu)先原則,著力開(kāi)發(fā)包括數(shù)據(jù)存儲(chǔ)技術(shù)、數(shù)據(jù)分析處理技術(shù)、數(shù)據(jù)可視化技術(shù)在內(nèi)的大數(shù)據(jù)技術(shù)。三是共享原則。掌握反映受眾情感、訴求的數(shù)據(jù)或涉輿數(shù)據(jù)是開(kāi)展維護(hù)意識(shí)形態(tài)安全工作的前提。當(dāng)前,涉輿數(shù)據(jù)廣泛分布于政府、企業(yè)、社會(huì)組織等部門,由于上述部門缺乏統(tǒng)一的數(shù)據(jù)存儲(chǔ)標(biāo)準(zhǔn),各部門所擁有的涉輿數(shù)據(jù)無(wú)法實(shí)現(xiàn)兼容,這加大了涉輿數(shù)據(jù)的采集成本。因此,必須堅(jiān)持共享原則,建立部門間數(shù)據(jù)資源統(tǒng)籌管理與共享復(fù)用制度,進(jìn)而突破數(shù)據(jù)共享瓶頸,形成部門間數(shù)據(jù)共享共用格局。四是法制保障原則。采集反映受眾情感、訴求的數(shù)據(jù)(涉輿數(shù)據(jù))是科學(xué)制訂網(wǎng)絡(luò)意識(shí)形態(tài)工作方案,維護(hù)國(guó)家意識(shí)形態(tài)安全的前提。在涉輿數(shù)據(jù)的采集過(guò)程中,不可避免地要涉及個(gè)人隱私遭泄露的問(wèn)題,更糟糕的是,某些權(quán)力機(jī)構(gòu)或掌握實(shí)權(quán)的人物可能為了一己之私而泄露、濫用涉輿數(shù)據(jù)。一旦一些關(guān)鍵、敏感的涉輿數(shù)據(jù)或數(shù)據(jù)分析結(jié)論遭泄露或被濫用,很可能會(huì)造成國(guó)家意識(shí)形態(tài)安全工作處于守勢(shì)。為此,必須建立和完善相關(guān)法律、法規(guī),從法制層面嚴(yán)格規(guī)范涉輿數(shù)據(jù)的采集和利用,為保障國(guó)家意識(shí)形態(tài)安全奠定堅(jiān)實(shí)的法制基石。五是人才支撐原則。大數(shù)據(jù)從概念到實(shí)踐,從技術(shù)到應(yīng)用,從戰(zhàn)略到執(zhí)行的過(guò)程中,需要大量既諳熟大數(shù)據(jù)理論又具有數(shù)據(jù)搜集、存儲(chǔ)、分析及應(yīng)用經(jīng)驗(yàn)的數(shù)據(jù)人才。六是內(nèi)外結(jié)合原則。對(duì)我國(guó)而言,實(shí)施好國(guó)家大數(shù)據(jù)工程還有很長(zhǎng)的路要走,還有很多的技術(shù)難關(guān)有待突破。因此,不妨學(xué)習(xí)并借鑒西方發(fā)達(dá)國(guó)家在這方面的成功經(jīng)驗(yàn)與具體做法。當(dāng)然,在借鑒西方發(fā)達(dá)國(guó)家的經(jīng)驗(yàn)時(shí),必須立足于中國(guó)的實(shí)際,靈活借鑒,防止生搬硬套。

2.從具體技術(shù)層面完善國(guó)家大數(shù)據(jù)工程的內(nèi)涵

國(guó)家大數(shù)據(jù)工程,毋庸置疑,是一項(xiàng)復(fù)雜的系統(tǒng)性工程,是由多個(gè)子系統(tǒng)構(gòu)成的。因此,要實(shí)施好國(guó)家大數(shù)據(jù)工程,就必須豐富各子系統(tǒng)的內(nèi)涵,充實(shí)各子系統(tǒng)的內(nèi)容。

一是實(shí)施數(shù)據(jù)搜集工程,提高意識(shí)形態(tài)工作方案準(zhǔn)確性。還有不少人因?yàn)楦鞣矫嬖驘o(wú)法通過(guò)網(wǎng)絡(luò)平臺(tái)表情達(dá)意。誠(chéng)如徐繼華所言,在科技迅猛發(fā)展的今天,還有很大一部分的農(nóng)民和城市底層居民,他們因?yàn)楦鞣N原因而成為信息時(shí)代的缺席者,無(wú)法在網(wǎng)絡(luò)世界表達(dá)意見(jiàn)和訴求。盡管他們的意愿也會(huì)由一些網(wǎng)民代為表達(dá),但畢竟只是“被代表”。為此,有必要通過(guò)實(shí)施數(shù)據(jù)搜集工程,搜集反映這部分人群思想動(dòng)態(tài)的數(shù)據(jù),以提升意識(shí)形態(tài)工作方案的準(zhǔn)確性。(1)實(shí)施信息惠民工程。國(guó)家每年應(yīng)從網(wǎng)絡(luò)基礎(chǔ)設(shè)施投資中,撥付固定比例的資金用于農(nóng)村現(xiàn)代網(wǎng)絡(luò)基礎(chǔ)設(shè)施建設(shè),為廣大農(nóng)村地區(qū)的人民群眾通過(guò)網(wǎng)絡(luò)平臺(tái)表達(dá)情感、反映訴求提供便利,為意識(shí)形態(tài)工作者搜集反映該群體思想動(dòng)態(tài)的數(shù)據(jù)提供渠道。(2)大力發(fā)展農(nóng)村現(xiàn)代信息教育。依靠國(guó)家財(cái)政可以建設(shè)一大批農(nóng)村現(xiàn)代網(wǎng)絡(luò)基礎(chǔ)設(shè)施,但是,如果做為信息時(shí)代缺席者的農(nóng)民不懂得如何使用這些網(wǎng)絡(luò)基礎(chǔ)設(shè)施,意識(shí)形態(tài)工作者同樣無(wú)法獲取反映他們的思想與情感方面的數(shù)據(jù)。為此,應(yīng)當(dāng)大力發(fā)展農(nóng)村現(xiàn)代信息教育,提升廣大農(nóng)民的信息素養(yǎng)。

二是實(shí)施數(shù)據(jù)清洗工程,確保數(shù)據(jù)真實(shí)可靠。有必要通過(guò)實(shí)施數(shù)據(jù)清洗工程,清洗掉虛假的涉輿數(shù)據(jù),以確保意識(shí)形態(tài)工作方案的準(zhǔn)確性。(1)著力發(fā)展數(shù)據(jù)清洗技術(shù)。數(shù)據(jù)清洗技術(shù)(Data Cleaning)可以起到改進(jìn)數(shù)據(jù)質(zhì)量的作用,被廣泛運(yùn)用于數(shù)據(jù)倉(cāng)庫(kù)及決策支持系統(tǒng)中,其主要任務(wù)是從原始數(shù)據(jù)集中剔除內(nèi)容殘缺、重復(fù)冗余、過(guò)時(shí)失效及錯(cuò)誤的數(shù)據(jù)。目前,已有一些用于數(shù)據(jù)清洗的ETL工具提供了功能強(qiáng)大的軟件平臺(tái),利用它們可以從類型多樣的數(shù)據(jù)源中對(duì)數(shù)據(jù)進(jìn)行抽取、轉(zhuǎn)換后加載至數(shù)據(jù)倉(cāng)庫(kù)中。因此,應(yīng)當(dāng)采取有力舉措大力發(fā)展數(shù)據(jù)清洗技術(shù),借助數(shù)據(jù)清洗技術(shù),從原始的涉輿數(shù)據(jù)集中清洗掉虛假、錯(cuò)誤與重復(fù)數(shù)據(jù),抽取出正確、有效的涉輿數(shù)據(jù),為開(kāi)展涉輿數(shù)據(jù)分析,精準(zhǔn)研判輿情創(chuàng)造條件。(2)公開(kāi)數(shù)據(jù)。在確保關(guān)鍵、機(jī)密、敏感的涉輿數(shù)據(jù)不外泄的前提下,通過(guò)移動(dòng)通信客戶端、信息可視化等渠道公開(kāi)涉輿數(shù)據(jù),接受公眾監(jiān)督,讓虛假數(shù)據(jù)無(wú)遁隱之處,為從涉輿數(shù)據(jù)集中清洗掉虛假涉輿數(shù)據(jù)創(chuàng)造條件。(3)監(jiān)測(cè)數(shù)據(jù)。積極培育社會(huì)化的第三方數(shù)據(jù)監(jiān)測(cè)機(jī)構(gòu),使其參與到涉輿數(shù)據(jù)的管理、控制與評(píng)估工作中,以剔除虛假涉輿數(shù)據(jù),確保涉輿數(shù)據(jù)的真實(shí)可靠。

三是實(shí)施數(shù)據(jù)分析工程,提升意識(shí)形態(tài)工作者的數(shù)據(jù)分析能力。對(duì)數(shù)據(jù)的誤解,會(huì)動(dòng)搖意識(shí)形態(tài)工作者對(duì)意識(shí)形態(tài)工作緊迫性的認(rèn)識(shí)。為此,我們應(yīng)該通過(guò)實(shí)施數(shù)據(jù)分析工程,提高意識(shí)形態(tài)工作者對(duì)大數(shù)據(jù)的解讀能力,增強(qiáng)意識(shí)形態(tài)工作者對(duì)意識(shí)形態(tài)工作緊迫性的認(rèn)識(shí)。(1)培訓(xùn)意識(shí)形態(tài)工作者。借助高校平臺(tái),并積極發(fā)揮社會(huì)教育與培訓(xùn)機(jī)構(gòu)的作用,對(duì)意識(shí)形態(tài)工作者進(jìn)行數(shù)據(jù)科學(xué)和數(shù)據(jù)工程等學(xué)科培訓(xùn),增強(qiáng)意識(shí)形態(tài)工作者的數(shù)據(jù)分析能力。(2)開(kāi)發(fā)數(shù)據(jù)分析技術(shù)。發(fā)揮高校、科研院所、政府、社會(huì)組織等的作用,著力研發(fā)一大批先進(jìn)的大數(shù)據(jù)分析技術(shù)。比如,情感語(yǔ)義分析、探索性數(shù)據(jù)分析、定性數(shù)據(jù)分析、離線數(shù)據(jù)分析、在線數(shù)據(jù)分析等,以幫助提高廣大意識(shí)形態(tài)工作者的數(shù)據(jù)分析能力。(3)做好聘用大數(shù)據(jù)分析師工作。積極聘請(qǐng)既諳熟大數(shù)據(jù)理論又有大數(shù)據(jù)分析實(shí)踐經(jīng)驗(yàn)的數(shù)據(jù)分析師服務(wù)于意識(shí)形態(tài)工作部門,幫助提升我國(guó)意識(shí)形態(tài)工作者的數(shù)據(jù)分析能力。

四是實(shí)施強(qiáng)化數(shù)據(jù)意識(shí)工程,增強(qiáng)意識(shí)形態(tài)工作者的數(shù)據(jù)意識(shí)。伴隨著各種隨身設(shè)備、物聯(lián)網(wǎng)和云計(jì)算、云存儲(chǔ)等技術(shù)的發(fā)展,人和物的所有軌跡都可以被記錄,數(shù)據(jù)因此被大量生產(chǎn)出來(lái)。海量數(shù)據(jù)從一個(gè)方面反映出了我國(guó)民眾的思想、情感,為有效開(kāi)展意識(shí)形態(tài)工作提供了條件??墒?,長(zhǎng)期以來(lái)一些意識(shí)形態(tài)工作者習(xí)慣于拍腦袋決策,沒(méi)有養(yǎng)成基于數(shù)據(jù)進(jìn)行決策的思維習(xí)慣。因此,有必要實(shí)施強(qiáng)化數(shù)據(jù)意識(shí)工程,以提高我國(guó)意識(shí)形態(tài)工作者的數(shù)據(jù)意識(shí),提升意識(shí)形態(tài)工作方案的可行性。(1)做好大數(shù)據(jù)知識(shí)普及工作。應(yīng)通過(guò)報(bào)紙、電視、新媒體等渠道,以社會(huì)大眾普遍可以接受的方式,開(kāi)展大數(shù)據(jù)知識(shí)普及工作,幫助意識(shí)形態(tài)工作者提高對(duì)其的認(rèn)知水平,促使他們逐步養(yǎng)成基于數(shù)據(jù)分析做出決策的思維習(xí)慣。(2)建立和完善意識(shí)形態(tài)數(shù)據(jù)庫(kù)。建立與完善意識(shí)形態(tài)數(shù)據(jù)庫(kù)是一項(xiàng)復(fù)雜的系統(tǒng)性工作,其中之一就是需要意識(shí)形態(tài)工作者及時(shí)把握輿情導(dǎo)向。這就會(huì)促使意識(shí)形態(tài)工作者經(jīng)常去密切關(guān)注各種涉輿數(shù)據(jù),進(jìn)而在一定程度上增強(qiáng)意識(shí)形態(tài)工作者的數(shù)據(jù)意識(shí)。(3)對(duì)意識(shí)形態(tài)工作者進(jìn)行培訓(xùn)。一方面通過(guò)集中學(xué)習(xí)、講座與開(kāi)會(huì)等方式對(duì)意識(shí)形態(tài)工作者進(jìn)行大數(shù)據(jù)理論培訓(xùn),以提高意識(shí)形態(tài)工作者對(duì)大數(shù)據(jù)理論的認(rèn)識(shí)水平;另一方面聘請(qǐng)數(shù)據(jù)專家在數(shù)據(jù)搜集、數(shù)據(jù)存儲(chǔ)、數(shù)據(jù)分析、數(shù)據(jù)安全等方面給意識(shí)形態(tài)工作者以具體指導(dǎo),從實(shí)踐層面強(qiáng)化其對(duì)大數(shù)據(jù)的認(rèn)知。

第4篇:大數(shù)據(jù)分析戰(zhàn)略范文

大數(shù)據(jù)所帶來(lái)的改變和價(jià)值已經(jīng)毋庸置疑,但對(duì)于傳統(tǒng)行業(yè)和企業(yè)而言,究竟該如何制定自己的大數(shù)據(jù)戰(zhàn)略,從而讓大數(shù)據(jù)為自己所用呢?

企業(yè)要實(shí)施大數(shù)據(jù)戰(zhàn)略,需要從五大關(guān)鍵方面規(guī)劃:1.制定大數(shù)據(jù)規(guī)劃找準(zhǔn)切入點(diǎn);2.強(qiáng)化大數(shù)據(jù)領(lǐng)導(dǎo)力設(shè)立CDO;3.設(shè)計(jì)合理的大數(shù)據(jù)組織結(jié)構(gòu);4.搭建富有執(zhí)行力的大數(shù)據(jù)團(tuán)隊(duì);5.用制度和文化保障大數(shù)據(jù)實(shí)施。

1.制定大數(shù)據(jù)規(guī)劃找準(zhǔn)切入點(diǎn)

成功的大數(shù)據(jù)規(guī)劃聚焦于四個(gè)核心要素:應(yīng)用場(chǎng)景、數(shù)據(jù)產(chǎn)品、分析模型和數(shù)據(jù)資產(chǎn),企業(yè)著手實(shí)施大數(shù)據(jù)戰(zhàn)略要著重考慮這四大方面,管理者需要在這四方面做好規(guī)劃,才能給企業(yè)帶來(lái)更好的業(yè)務(wù)價(jià)值。

第一方面是應(yīng)用場(chǎng)景。企業(yè)需要確定不同業(yè)務(wù)投入大數(shù)據(jù)的優(yōu)先級(jí),確定大數(shù)據(jù)的切入點(diǎn)。企業(yè)需要優(yōu)先考慮業(yè)務(wù)應(yīng)在哪些方面投入大數(shù)據(jù)可以為企業(yè)提升績(jī)效。常見(jiàn)的大數(shù)據(jù)應(yīng)用場(chǎng)景,包括業(yè)務(wù)運(yùn)營(yíng)監(jiān)控、用戶洞察與用戶體驗(yàn)優(yōu)化、精細(xì)化運(yùn)營(yíng)和營(yíng)銷、業(yè)務(wù)市場(chǎng)傳播、經(jīng)營(yíng)分析等常見(jiàn)的方面。當(dāng)然在人力資源、IT運(yùn)維以及財(cái)務(wù)等方向也可以引入大數(shù)據(jù)。企業(yè)高管需要和各業(yè)務(wù)的整體負(fù)責(zé)人、數(shù)據(jù)專家一起開(kāi)展研討會(huì),分析哪些業(yè)務(wù)投入大數(shù)據(jù)可以使得業(yè)務(wù)的績(jī)效提升最為顯著,從而確定不同業(yè)務(wù)投入大數(shù)據(jù)的優(yōu)先級(jí),找準(zhǔn)大數(shù)據(jù)的切入點(diǎn)。“數(shù)據(jù)能夠在哪些領(lǐng)域?qū)崿F(xiàn)業(yè)績(jī)的大幅提高?數(shù)據(jù)能在哪些領(lǐng)域?qū)崿F(xiàn)企業(yè)運(yùn)營(yíng)效率的提升”這些問(wèn)題很重要,一開(kāi)始就必須提出來(lái)。每個(gè)重要業(yè)務(wù)部門和職能部門都需要考慮這個(gè)問(wèn)題,并展開(kāi)相關(guān)的研討。企業(yè)高管實(shí)施大數(shù)據(jù)戰(zhàn)略的時(shí)候需要高度重視這一步,但在國(guó)內(nèi)很多企業(yè)往往忽略的這一方面,投入大數(shù)據(jù)往往不是以提升業(yè)績(jī)導(dǎo)向,而是以學(xué)術(shù)導(dǎo)向,使得很多企業(yè)實(shí)施大數(shù)據(jù)的看不到數(shù)據(jù)對(duì)企業(yè)績(jī)效的提升,從而使得大數(shù)據(jù)戰(zhàn)略流產(chǎn)。

第二方面是數(shù)據(jù)產(chǎn)品。在確定了大數(shù)據(jù)的業(yè)務(wù)投入優(yōu)先級(jí)后,需要考慮的是如何通過(guò)數(shù)據(jù)產(chǎn)品來(lái)幫助提升業(yè)務(wù)的績(jī)效。為什么是“數(shù)據(jù)產(chǎn)品”而不是“數(shù)據(jù)工具”,這是因?yàn)椤皵?shù)據(jù)產(chǎn)品”比“數(shù)據(jù)工具”更加強(qiáng)調(diào)易用性和用戶體驗(yàn)。數(shù)據(jù)和分析模型本身的輸出可能會(huì)比較復(fù)雜,比較難理解,這樣往往導(dǎo)致經(jīng)理或者一線員工等數(shù)據(jù)用戶無(wú)法理解,更談不上運(yùn)用。所以,只有數(shù)據(jù)產(chǎn)品在業(yè)務(wù)具體的場(chǎng)景運(yùn)用的時(shí)候,以非常簡(jiǎn)單易用的方式來(lái)呈現(xiàn),才能讓更多的數(shù)據(jù)用戶使用。企業(yè)數(shù)據(jù)用戶在實(shí)際運(yùn)用大數(shù)據(jù)的時(shí)候,更關(guān)注的是大數(shù)據(jù)的產(chǎn)品在哪些方面可以直接幫助企業(yè)提升績(jī)效,不會(huì)太關(guān)注大數(shù)據(jù)這些產(chǎn)品背后的邏輯、分析模型等“黑洞”。如果我們?cè)谔峁?shù)據(jù)產(chǎn)品的時(shí)候需要數(shù)據(jù)用戶理解很多“黑洞”,那么數(shù)據(jù)一定運(yùn)用不起來(lái),數(shù)據(jù)的價(jià)值就會(huì)大打折扣。

第三方面是數(shù)據(jù)模型。數(shù)據(jù)產(chǎn)品背后的“黑洞”是數(shù)據(jù)模型。數(shù)據(jù)的堆砌不會(huì)創(chuàng)造太多的業(yè)務(wù)價(jià)值,需要數(shù)據(jù)模型、數(shù)據(jù)挖掘的方法來(lái)實(shí)現(xiàn)海量數(shù)據(jù)的商業(yè)洞察。常見(jiàn)的模型如預(yù)測(cè)和分類。在預(yù)測(cè)方面,如通過(guò)高級(jí)的模型來(lái)預(yù)測(cè)哪些用戶可能會(huì)付費(fèi),他們的特征是什么,經(jīng)常在什么地方出現(xiàn);通過(guò)數(shù)據(jù)模型來(lái)預(yù)測(cè)付費(fèi)客戶的數(shù)量,以提前發(fā)現(xiàn)考核期結(jié)束后付費(fèi)客戶數(shù)量和KPI的差距以及優(yōu)化方向;通過(guò)預(yù)測(cè)模型來(lái)洞察用戶的未來(lái)購(gòu)買需求;在分類模型方面,我們可以通過(guò)分類模型結(jié)合大數(shù)據(jù)實(shí)現(xiàn)更準(zhǔn)確更實(shí)時(shí)的用戶細(xì)分;或者通過(guò)分類模型對(duì)不同價(jià)值的客戶進(jìn)行合理的分類,確定服務(wù)的優(yōu)先級(jí)和服務(wù)內(nèi)容。企業(yè)在制定大數(shù)據(jù)戰(zhàn)略方向時(shí),需要介入數(shù)據(jù)專家根據(jù)應(yīng)用場(chǎng)景和數(shù)據(jù)產(chǎn)品的輸出來(lái)選擇模型以及優(yōu)化模型,從而確定模型研發(fā)的方向和優(yōu)先級(jí)。

第四方面是數(shù)據(jù)資產(chǎn)。有了應(yīng)用場(chǎng)景、數(shù)據(jù)產(chǎn)品和數(shù)據(jù)模型這三大方面,就能更清楚地知道為了實(shí)現(xiàn)這三大方面,我們需要哪些數(shù)據(jù),什么數(shù)據(jù)是企業(yè)現(xiàn)在擁有,什么數(shù)據(jù)可以通過(guò)合作產(chǎn)生,什么數(shù)據(jù)需要外部整合,什么數(shù)據(jù)需要進(jìn)行購(gòu)買或者投資。有了前面這三大方面(應(yīng)用場(chǎng)景、數(shù)據(jù)產(chǎn)品和數(shù)據(jù)模型)的規(guī)劃,大數(shù)據(jù)的采集、整合、管理的策略便能比較容易理清頭緒和相應(yīng)的規(guī)劃。當(dāng)我們合理地整理企業(yè)所擁有的數(shù)據(jù),并整合有利于業(yè)務(wù)發(fā)展的外部的數(shù)據(jù),形成系統(tǒng)化的管理,才能很好地形成企業(yè)的數(shù)據(jù)資產(chǎn)。但在國(guó)內(nèi),最大的問(wèn)題常常是各業(yè)務(wù)部門、各事業(yè)部以及職能部門的數(shù)據(jù)經(jīng)常各自為政,數(shù)據(jù)存放在不同的數(shù)據(jù)庫(kù)中,數(shù)據(jù)無(wú)法整合打通,企業(yè)內(nèi)部形成各種孤島,導(dǎo)致企業(yè)數(shù)據(jù)資產(chǎn)無(wú)法發(fā)揮整合效益,數(shù)據(jù)資產(chǎn)流失。要讓企業(yè)的數(shù)據(jù)成為長(zhǎng)期的數(shù)據(jù)資產(chǎn),企業(yè)高管則需牽頭規(guī)劃,整合不同業(yè)務(wù)部門、不同事業(yè)部的數(shù)據(jù),推動(dòng)建設(shè)高數(shù)據(jù)質(zhì)量的數(shù)據(jù)治理標(biāo)準(zhǔn)。

值得注意的是,為了加快大數(shù)據(jù)的推進(jìn)速度,企業(yè)高管同時(shí)需要確定哪些方面自己實(shí)現(xiàn),哪些方面委托第三方實(shí)現(xiàn),哪些方面需要購(gòu)買。在數(shù)據(jù)產(chǎn)品和數(shù)據(jù)模型方向,不一定所有工作都需要內(nèi)部員工實(shí)現(xiàn)。領(lǐng)導(dǎo)層需要根據(jù)時(shí)間和自身資源(尤其是人力資源)的情況判斷,哪些數(shù)據(jù)產(chǎn)品自己開(kāi)發(fā)、哪些數(shù)據(jù)產(chǎn)品可以委托第三方公司開(kāi)發(fā)、哪些數(shù)據(jù)模型自己開(kāi)發(fā)、哪些數(shù)據(jù)模型委托第三方公司開(kāi)發(fā)。在收集外部數(shù)據(jù)的時(shí)候,我們既可以組建自己的團(tuán)隊(duì)進(jìn)行數(shù)據(jù)收集,或者委托第三方公司幫忙收集,或者直接采購(gòu),或者收購(gòu)相關(guān)的數(shù)據(jù)公司,企業(yè)需要根據(jù)自身情況進(jìn)行合理的規(guī)劃。

2.強(qiáng)化高管團(tuán)隊(duì)大數(shù)據(jù)能力,設(shè)立數(shù)據(jù)CDO(首席數(shù)據(jù)官)

在互聯(lián)網(wǎng)和大數(shù)據(jù)高速發(fā)展的時(shí)代,大數(shù)據(jù)正在深刻地改變商業(yè)的前景,如果企業(yè)要想抓住這個(gè)機(jī)遇,企業(yè)高管的數(shù)據(jù)決策力,數(shù)據(jù)管理能力也需要加強(qiáng)。抓住和大數(shù)據(jù)相關(guān)的機(jī)會(huì)可以增加企業(yè)營(yíng)收、提高企業(yè)運(yùn)營(yíng)效率,甚至開(kāi)拓出全新業(yè)務(wù)。大數(shù)據(jù)在推進(jìn)的過(guò)程中,最關(guān)鍵是要高管重視,不僅是嘴上說(shuō)說(shuō),而要考慮在決策層有強(qiáng)化數(shù)據(jù)方向的決策力和領(lǐng)導(dǎo)力,否則企業(yè)很難把大數(shù)據(jù)用好。如果不增加新數(shù)據(jù)高管力量,很多組織的大數(shù)據(jù)大計(jì)將難以啟動(dòng)。

因此,高管團(tuán)隊(duì)中需要有專人負(fù)責(zé)制定大數(shù)據(jù)戰(zhàn)略、跟進(jìn)、監(jiān)控和指導(dǎo)大數(shù)據(jù)戰(zhàn)略的實(shí)施。如果沒(méi)有在高管團(tuán)隊(duì)設(shè)立相關(guān)的數(shù)據(jù)負(fù)責(zé)人的職位CDO(首席數(shù)據(jù)官),則很難把數(shù)據(jù)分析和數(shù)據(jù)挖掘所發(fā)現(xiàn)的機(jī)會(huì)應(yīng)用于企業(yè)戰(zhàn)略層的業(yè)務(wù)發(fā)展決策以及相應(yīng)的組織層面的變革。所以,我們建議,如果企業(yè)確實(shí)要推動(dòng)大數(shù)據(jù),一定要考慮設(shè)立CDO職位。

這里面還有一個(gè)比較重要的問(wèn)題是:CDO是向CEO匯報(bào)還是COO匯報(bào)或者是向CTO匯報(bào)。企業(yè)往往陷入一個(gè)誤區(qū),覺(jué)得數(shù)據(jù)是技術(shù)活,所以不少企業(yè)設(shè)立數(shù)據(jù)高管后,讓數(shù)據(jù)高管直接向CTO匯報(bào)。這樣的做法最大的問(wèn)題是數(shù)據(jù)和業(yè)務(wù)還是有較大的脫節(jié)。建議數(shù)據(jù)高管應(yīng)該向COO匯報(bào)或者CEO匯報(bào)。這樣數(shù)據(jù)才能離業(yè)務(wù)更近,更能敏捷地應(yīng)用于業(yè)績(jī)的提升上,而不是躲在技術(shù)后面。我們所看到的大數(shù)據(jù)運(yùn)用得較好的企業(yè),數(shù)據(jù)負(fù)責(zé)人經(jīng)常和業(yè)務(wù)負(fù)責(zé)人一起制定公司大數(shù)據(jù)實(shí)施計(jì)劃,一起推進(jìn)大數(shù)據(jù)在業(yè)務(wù)績(jī)效提升。

CDO是一個(gè)綜合能力要求非常高的職位。CDO主要是負(fù)責(zé)根據(jù)企業(yè)的戰(zhàn)略發(fā)展需求,CDO需要跟各業(yè)務(wù)負(fù)責(zé)人有很好的互動(dòng),深入了解業(yè)務(wù),在此基礎(chǔ)上,制定在數(shù)據(jù)應(yīng)用場(chǎng)景、數(shù)據(jù)產(chǎn)品化、數(shù)據(jù)建模、數(shù)據(jù)資產(chǎn)管理的戰(zhàn)略并推動(dòng)實(shí)施,在實(shí)施數(shù)據(jù)戰(zhàn)略的過(guò)程中,梳理企業(yè)的數(shù)據(jù)化思維方式,推動(dòng)構(gòu)建相應(yīng)的數(shù)據(jù)企業(yè)文化和制度,使得大數(shù)據(jù)可以有效地促進(jìn)業(yè)務(wù)績(jī)效的提升,企業(yè)運(yùn)營(yíng)效率的提升,甚至是新商業(yè)模式的變革。

3.設(shè)計(jì)合理的大數(shù)據(jù)組織架構(gòu)

企業(yè)的組織結(jié)構(gòu)是企業(yè)戰(zhàn)略能夠順利實(shí)施的基礎(chǔ),所以,大數(shù)據(jù)團(tuán)隊(duì)合理的組織架構(gòu)設(shè)置對(duì)于大數(shù)據(jù)戰(zhàn)略能否成功實(shí)施尤為關(guān)鍵。國(guó)內(nèi)很多企業(yè)往往忽略這一方面。很多企業(yè)設(shè)立數(shù)據(jù)團(tuán)隊(duì)缺乏統(tǒng)一規(guī)劃,哪個(gè)事業(yè)部需要數(shù)據(jù)人員則在該事業(yè)部(或業(yè)務(wù)部門)設(shè)立,如下圖的“組織結(jié)構(gòu)1”,這種組織架構(gòu)是國(guó)內(nèi)最常見(jiàn)的,這種組織架構(gòu)最大的問(wèn)題是數(shù)據(jù)分散,缺乏統(tǒng)一管理和整合,企業(yè)內(nèi)部各事業(yè)群(或業(yè)務(wù)部門)數(shù)據(jù)各自為政,形成數(shù)據(jù)孤島,數(shù)據(jù)無(wú)法整合使用,導(dǎo)致數(shù)據(jù)資產(chǎn)流失。

另一種常見(jiàn)的做法是在公司只設(shè)立一個(gè)中央數(shù)據(jù)部門,該數(shù)據(jù)部門統(tǒng)一服務(wù)各個(gè)事業(yè)部(或業(yè)務(wù)部門),各個(gè)事業(yè)部(或業(yè)務(wù)部門)沒(méi)有數(shù)據(jù)人員或者團(tuán)隊(duì),如圖中的“組織結(jié)構(gòu)2”。這種組織架構(gòu)的問(wèn)題在于數(shù)據(jù)雖然集中管理,但數(shù)據(jù)遠(yuǎn)離業(yè)務(wù),導(dǎo)致很多數(shù)據(jù)人員不理解業(yè)務(wù),無(wú)法挖掘數(shù)據(jù)的價(jià)值,無(wú)法通過(guò)數(shù)據(jù)很好地輔助業(yè)務(wù)提升績(jī)效或者運(yùn)營(yíng)效率。由于數(shù)據(jù)人員無(wú)法理解業(yè)務(wù),導(dǎo)致數(shù)據(jù)庫(kù)中存儲(chǔ)的很多數(shù)據(jù)變成“死”數(shù)據(jù),數(shù)據(jù)的業(yè)務(wù)含義少有人理解,數(shù)據(jù)的價(jià)值便容易流失。

較為合理的數(shù)據(jù)團(tuán)隊(duì)在組織架構(gòu)應(yīng)該這樣設(shè)立:首先,設(shè)立公司級(jí)的中央數(shù)據(jù)部門,集中存儲(chǔ)和管理數(shù)據(jù);其次是每個(gè)事業(yè)部(或業(yè)務(wù)部門)設(shè)立數(shù)據(jù)團(tuán)隊(duì);第三是在總辦設(shè)立CDO的崗位。這樣的好處在于數(shù)據(jù)能夠集中管理,數(shù)據(jù)貼近業(yè)務(wù),可以很好地發(fā)揮數(shù)據(jù)的價(jià)值;同時(shí),在總辦(高管團(tuán)隊(duì))設(shè)立CDO崗位,可以讓數(shù)據(jù)更好地為決策層服務(wù),數(shù)據(jù)分析所發(fā)現(xiàn)的商業(yè)價(jià)值也可以更快地應(yīng)用于業(yè)務(wù)戰(zhàn)略調(diào)整。

大家比較關(guān)心的是,在這個(gè)組織結(jié)構(gòu)下,中央數(shù)據(jù)部門和各事業(yè)部(或業(yè)務(wù)部門)的數(shù)據(jù)團(tuán)隊(duì)有何差異。我們可以從兩大方面來(lái)區(qū)分:

(1)從匯報(bào)關(guān)系的差異來(lái)看

事業(yè)部的數(shù)據(jù)團(tuán)隊(duì)負(fù)責(zé)人向所屬事業(yè)部的總負(fù)責(zé)人匯報(bào),中央數(shù)據(jù)部門的負(fù)責(zé)人向CDO匯報(bào),這樣的匯報(bào)關(guān)系的好處在于,前者讓數(shù)據(jù)能為具體的事業(yè)部服務(wù)輔助提升業(yè)績(jī),每個(gè)事業(yè)部必然有其不同的數(shù)據(jù)分析重點(diǎn),這樣可以讓數(shù)據(jù)服務(wù)更有針對(duì)性,后者讓數(shù)據(jù)更有大局觀,能為總辦做深度的數(shù)據(jù)洞察服務(wù)。

(2)從團(tuán)隊(duì)工作職責(zé)差異來(lái)看

中央數(shù)據(jù)部門負(fù)責(zé)數(shù)據(jù)的規(guī)范化集中存儲(chǔ)和管理,負(fù)責(zé)公司各業(yè)務(wù)線數(shù)據(jù)的整合打通,形成公司級(jí)統(tǒng)一的用戶(客戶)畫(huà)像,負(fù)責(zé)標(biāo)準(zhǔn)化的數(shù)據(jù)產(chǎn)品并應(yīng)用到各業(yè)務(wù)線中,形成深度的公司級(jí)的數(shù)據(jù)模型和算法,做出公司集團(tuán)層面視角的分析和洞察;

事業(yè)部中的數(shù)據(jù)團(tuán)隊(duì)負(fù)責(zé)該事業(yè)群的日常統(tǒng)計(jì)分析和事業(yè)群專題類的深度洞察,并輔助事業(yè)群的技術(shù)人員合理地把數(shù)據(jù)規(guī)范地上報(bào)到中央數(shù)據(jù)部門,與中央數(shù)據(jù)部門合作,共同深刻理解該業(yè)務(wù)的數(shù)據(jù)結(jié)構(gòu)、做更精細(xì)且與本部門關(guān)聯(lián)性更高的用戶畫(huà)像等與業(yè)務(wù)關(guān)聯(lián)度更高的數(shù)據(jù)工作,推動(dòng)該事業(yè)群所有的數(shù)據(jù)集中到中央數(shù)據(jù)部門,并輔助推動(dòng)公司級(jí)的數(shù)據(jù)產(chǎn)品應(yīng)用到本業(yè)務(wù)部門或者向中央數(shù)據(jù)部門提出數(shù)據(jù)產(chǎn)品化、數(shù)據(jù)建模的需求。

4.搭建有效的大數(shù)據(jù)團(tuán)隊(duì)

人才是大數(shù)據(jù)戰(zhàn)略實(shí)施至關(guān)重要的方面,因此,設(shè)置符合大數(shù)據(jù)能力要求的團(tuán)隊(duì)就顯得尤為重要。如果組織缺乏合適的人才或能力,大數(shù)據(jù)戰(zhàn)略實(shí)施的結(jié)果很可能會(huì)令人沮喪。因此,企業(yè)做好相應(yīng)的人才規(guī)劃,按照合理的規(guī)模和構(gòu)成來(lái)建設(shè)人才庫(kù)。上文提到,在合理的大數(shù)據(jù)組織架構(gòu)下,有兩類數(shù)據(jù)團(tuán)隊(duì),一類是各事業(yè)部中的數(shù)據(jù)團(tuán)隊(duì);第二類是中央數(shù)據(jù)部門的數(shù)據(jù)團(tuán)隊(duì)。上文提到兩類團(tuán)隊(duì)其職責(zé)不同,因此,能力要求也不一樣。事業(yè)部的數(shù)據(jù)團(tuán)隊(duì)能力要求是數(shù)據(jù)分析為主,招聘主要為數(shù)據(jù)分析師或者數(shù)據(jù)分析專家。而中央數(shù)據(jù)部門的數(shù)據(jù)能力要求較為復(fù)雜,包括六大方面的能力,即數(shù)據(jù)分析、用戶研究、數(shù)據(jù)產(chǎn)品、算法工程、數(shù)據(jù)統(tǒng)計(jì)和數(shù)據(jù)平臺(tái)。在此我們展開(kāi)介紹中央數(shù)據(jù)部門六大方向的能力要求:

(1)數(shù)據(jù)分析團(tuán)隊(duì)負(fù)責(zé)公司級(jí)的業(yè)務(wù)數(shù)據(jù)體系梳理和建設(shè)、公司級(jí)的業(yè)務(wù)專題數(shù)據(jù)分析和收入分析;此處的數(shù)據(jù)分析團(tuán)隊(duì)能力要求與事業(yè)部中的數(shù)據(jù)分析團(tuán)隊(duì)類似,區(qū)別主要是他們分析時(shí)的視角有所不同;

(2)用戶研究團(tuán)隊(duì)負(fù)責(zé)用戶調(diào)研、口碑監(jiān)測(cè)、產(chǎn)品體驗(yàn)分析等方面。用戶研究團(tuán)隊(duì)主要面對(duì)的小數(shù)據(jù),但由于用戶研究可以發(fā)現(xiàn)大數(shù)據(jù)所不能發(fā)現(xiàn)的用戶使用行為背后的動(dòng)機(jī)及態(tài)度等方面,所以用戶研究團(tuán)隊(duì)與數(shù)據(jù)分析團(tuán)隊(duì)兩者結(jié)合將能實(shí)現(xiàn)大小數(shù)據(jù)結(jié)合全方面洞察用戶的作用;

第5篇:大數(shù)據(jù)分析戰(zhàn)略范文

問(wèn)題1:IT部門應(yīng)該花費(fèi)多少時(shí)間在數(shù)據(jù)挖掘分析上面?從商業(yè)的角度來(lái)看,這種投入是否有價(jià)值?

JBA International:數(shù)據(jù)挖掘必須去做,這是一個(gè)長(zhǎng)遠(yuǎn)的計(jì)劃。

Linda Tucci:如果企業(yè)的業(yè)務(wù)是數(shù)據(jù)驅(qū)動(dòng)型的,那么數(shù)據(jù)收集、提取和呈現(xiàn)就很值得的。

Michael Gerard:數(shù)據(jù)分析是值得去做的一件事情,但必須是為了解決某個(gè)特定問(wèn)題而做的分析,同時(shí)也要有一定的短期價(jià)值。

問(wèn)題2:如果說(shuō)數(shù)據(jù)分析是值得去做的事情,那么又表現(xiàn)在哪些方面?

Dun & Bradstreet:數(shù)據(jù)分析可以幫助企業(yè)衡量業(yè)績(jī)表現(xiàn),同時(shí)還能對(duì)管理方法和敏捷決策的制定做提前預(yù)警和規(guī)劃。

TOA Technologies:我想再補(bǔ)充一點(diǎn):通過(guò)數(shù)據(jù)分析得出的預(yù)測(cè),我們可以提升工作效率,改善客戶服務(wù)。

Wendy Schuchart:以沃爾瑪為例,在大數(shù)據(jù)之前,他們經(jīng)常雇傭一些偷過(guò)他們東西的人為店員,這看起來(lái)是個(gè)很沒(méi)有腦子的決定。

Brian Katz:在花費(fèi)時(shí)間和資金投入到大數(shù)據(jù)分析之前,你需要明白你有哪些需求,需要解決哪些問(wèn)題。

Nicole Laskowski:Nate Silver(大數(shù)據(jù)專家,曾利用大數(shù)據(jù)成功預(yù)測(cè)了2012年美國(guó)總統(tǒng)選舉結(jié)果)曾經(jīng)警告說(shuō),企業(yè)決策者應(yīng)該對(duì)大數(shù)據(jù)的概念和應(yīng)用保持謹(jǐn)慎,否則很可能導(dǎo)致一些錯(cuò)誤的決策。

Linda Tucci:對(duì)IT部門來(lái)說(shuō),數(shù)據(jù)收集是一個(gè)挑戰(zhàn),提取則是另一個(gè)困難,至于如何呈現(xiàn)更不一樣。

BI儀表盤(pán)工具的地位與設(shè)計(jì)

第6篇:大數(shù)據(jù)分析戰(zhàn)略范文

在大數(shù)據(jù)方面,Alpine與EMC、IBM、Oracle等廠商在交通、金融、電信、零售等領(lǐng)域保持著密切的合作關(guān)系。EMC雖然是Alpine的股東之一,不過(guò)也鼓勵(lì)A(yù)lpine與EMC之外的其他大數(shù)據(jù)廠商合作,以中立的第三方的姿態(tài)為客戶和廣泛的合作伙伴提供大數(shù)據(jù)方面的支持和服務(wù)。

榮之聯(lián)在云計(jì)算方面擁有比較多的成功經(jīng)驗(yàn),尤其是在生物云、動(dòng)漫云等方面已經(jīng)是國(guó)內(nèi)的佼佼者。

舉例來(lái)說(shuō),榮之聯(lián)幫助華大基因構(gòu)建了生物云,存儲(chǔ)容量達(dá)到20PB,計(jì)算能力達(dá)到200萬(wàn)億次。由于生物學(xué)方面的數(shù)據(jù)量非常龐大,而且大多數(shù)是非結(jié)構(gòu)化的數(shù)據(jù),在過(guò)去一年中,榮之聯(lián)一直探索如何在生物領(lǐng)域提高數(shù)據(jù)處理和分析的性能,降低復(fù)雜度。在選擇與Alpine合作之前,榮之聯(lián)曾經(jīng)對(duì)Alpine進(jìn)行了大約一年的考察。榮之聯(lián)的高層也親赴美國(guó)Alpine總部參觀,同時(shí)走訪了很多Alpine在美國(guó)的用戶。榮之聯(lián)總經(jīng)理張彤表示:“與Alpine合作,榮之聯(lián)可以更好地在生物學(xué)領(lǐng)域深耕大數(shù)據(jù)市場(chǎng)。雙方的合作是戰(zhàn)略性的,對(duì)于擴(kuò)大雙方在中國(guó)大數(shù)據(jù)市場(chǎng)上的份額十分有益?!?/p>

Alpine首席執(zhí)行官Anderson Wong表示:“榮之聯(lián)一直專注于數(shù)據(jù)中心市場(chǎng),擁有良好的技術(shù)基礎(chǔ)和客戶基礎(chǔ),并在全國(guó)擁有近20個(gè)分支機(jī)構(gòu)。這有利于Alpine迅速打開(kāi)中國(guó)市場(chǎng),為客戶提供良好的本地化服務(wù)。”

IDC的報(bào)告顯示,全球信息總量每?jī)赡昃蜁?huì)翻一番,到2020年,全球信息總量將達(dá)到25ZB。處理復(fù)雜的海量數(shù)據(jù)需要有與之對(duì)應(yīng)的創(chuàng)新性的解決方案。

Anderson Wong介紹說(shuō):“在美國(guó),目前有大約150萬(wàn)名IT經(jīng)理需要直接使用大數(shù)據(jù)分析的結(jié)果?!迸c已經(jīng)存在了30多年的傳統(tǒng)商業(yè)智能(BI)解決方案相比,Alpine的大數(shù)據(jù)分析解決方案是一個(gè)涉及整個(gè)數(shù)據(jù)處理流程的智能化的解決方案,可以對(duì)不斷變化的信息進(jìn)行實(shí)時(shí)分析,從而為商業(yè)決策提供更好的支持。

在大數(shù)據(jù)領(lǐng)域,一體機(jī)的理念越來(lái)越流行。Anderson Wong對(duì)大數(shù)據(jù)一體機(jī)方案表示認(rèn)可。他表示:“提高大數(shù)據(jù)應(yīng)用的計(jì)算能力、存儲(chǔ)能力,還是要依靠?jī)?yōu)化的集成化硬件。在大數(shù)據(jù)領(lǐng)域,一體機(jī)的應(yīng)用是未來(lái)的一個(gè)趨勢(shì)。舉例來(lái)說(shuō),Oracle公司10%的數(shù)據(jù)庫(kù)用戶已將應(yīng)用平臺(tái)轉(zhuǎn)到了Exadata一體機(jī)上?!?/p>

Anderson Wong表示:“Alpine與榮之聯(lián)合作,一方面,可以拓展在中國(guó)的業(yè)務(wù)市場(chǎng),另一方面也可以把榮之聯(lián)在生物云、動(dòng)漫云等云計(jì)算方面的技術(shù)和成功經(jīng)驗(yàn)帶到美國(guó)去,可謂一舉兩得。”

在美國(guó),許多大型零售商、銀行等在使用傳統(tǒng)的數(shù)據(jù)倉(cāng)庫(kù)產(chǎn)品的基礎(chǔ)上,同時(shí)還選擇了Alpine的大數(shù)據(jù)產(chǎn)品。這是因?yàn)橛脩衄F(xiàn)在越來(lái)越需要能夠?qū)?shù)據(jù)進(jìn)行實(shí)時(shí)處理的、界面友好且方便使用的數(shù)據(jù)分析產(chǎn)品。

第7篇:大數(shù)據(jù)分析戰(zhàn)略范文

大數(shù)據(jù)時(shí)代正帶給企業(yè)根本性的變革,同時(shí),也給職場(chǎng)精英們提供了機(jī)遇,但機(jī)遇與挑戰(zhàn)并存。這對(duì)于初入社會(huì)的大學(xué)生而言,無(wú)疑是提出了一個(gè)巨大的挑戰(zhàn)。

1.1大數(shù)據(jù)時(shí)代對(duì)大學(xué)生的數(shù)據(jù)駕馭能力提出了新的挑戰(zhàn)

在大數(shù)據(jù)時(shí)代,大學(xué)生若想獲得好的就業(yè)機(jī)會(huì)需要有較強(qiáng)的數(shù)據(jù)駕馭能力,即數(shù)據(jù)素養(yǎng),在科學(xué)數(shù)據(jù)的采集、組織和管理、處理和分析、共享與協(xié)同創(chuàng)新利用等方面的能力,以及研究者在數(shù)據(jù)的生產(chǎn)、管理和過(guò)程中的道德與行為規(guī)范。而大學(xué)生們鮮有接觸大量數(shù)據(jù)并從中剔除糟粕找尋有用數(shù)據(jù)的經(jīng)歷,頂多是進(jìn)行過(guò)幾次較淺顯的問(wèn)卷調(diào)查工作,對(duì)數(shù)據(jù)技術(shù)、數(shù)據(jù)分析方法及相關(guān)軟件、國(guó)際數(shù)據(jù)化發(fā)展進(jìn)程等知之甚少,在數(shù)據(jù)素養(yǎng)方面可以說(shuō)是零基礎(chǔ)。

1.2大數(shù)據(jù)時(shí)代對(duì)大學(xué)生理性思維能力提出了新的挑戰(zhàn)

在大數(shù)據(jù)時(shí)代,人們對(duì)于過(guò)往經(jīng)驗(yàn)的依賴程度降低,而對(duì)數(shù)據(jù)分析得來(lái)的實(shí)時(shí)結(jié)果信任度大大提升,因此贏得就業(yè)競(jìng)爭(zhēng)需要大學(xué)生具備理性、邏輯性強(qiáng)的思維方式,從而能冷靜、不帶感彩地處理和分析數(shù)據(jù),得出客觀的結(jié)論。而大多數(shù)中國(guó)學(xué)生的理性、批判性思考的能力偏弱,缺乏個(gè)人的獨(dú)立思考,且文科專業(yè)尤其是語(yǔ)言類專業(yè)的課程設(shè)置對(duì)培養(yǎng)大學(xué)生理性思維能力的作用較小,大學(xué)生的理性思維能力亟待提高。

1.3大數(shù)據(jù)時(shí)代對(duì)大學(xué)生精確、快速、實(shí)時(shí)行動(dòng)的能力提出了新的挑戰(zhàn)

大數(shù)據(jù)時(shí)代信息瞬息萬(wàn)變,因此數(shù)據(jù)也是具有時(shí)效性的,要獲取實(shí)時(shí)數(shù)據(jù)反饋就必須有精確快速的反應(yīng)能力和行動(dòng)能力。一部分平常對(duì)于生活中的信息疏于收集的大學(xué)生可能會(huì)缺乏對(duì)信息的敏銳度,從而導(dǎo)致其較慢的反應(yīng)力和行動(dòng)能力,若其這方面的素質(zhì)沒(méi)有得到提高,則可能會(huì)在工作中產(chǎn)生在數(shù)據(jù)分析工作完成后卻發(fā)現(xiàn)得出的結(jié)論已不具時(shí)效性的情況,導(dǎo)致喪失最佳的工作機(jī)遇,降低了自身的職業(yè)發(fā)展競(jìng)爭(zhēng)力。

2如何在大數(shù)據(jù)時(shí)代提高大學(xué)生就業(yè)競(jìng)爭(zhēng)力

大數(shù)據(jù)時(shí)代帶給了大學(xué)生數(shù)據(jù)分析能力、思維方式、科學(xué)精神、行動(dòng)力等方面的就業(yè)挑戰(zhàn),因此政府、各高校及大學(xué)生自身都應(yīng)積極應(yīng)對(duì)挑戰(zhàn),從不同層面克服困難,共同提高大學(xué)生在大數(shù)據(jù)時(shí)代的就業(yè)競(jìng)爭(zhēng)力。

2.1高校、政府應(yīng)建立大學(xué)生就業(yè)大數(shù)據(jù)分析機(jī)制,做好大學(xué)畢業(yè)生的就業(yè)、創(chuàng)業(yè)服務(wù)工作

大學(xué)生就業(yè)大數(shù)據(jù)分析離不開(kāi)大數(shù)據(jù)的支持,而大數(shù)據(jù)的建設(shè)是一項(xiàng)科學(xué)、有序、動(dòng)態(tài)且可持續(xù)發(fā)展的系統(tǒng)性工程。政府需要從建立運(yùn)行機(jī)制、規(guī)范建設(shè)標(biāo)準(zhǔn)、建設(shè)共享平臺(tái)、提供專業(yè)隊(duì)伍等多方面進(jìn)行支持,且通過(guò)建立各高校就業(yè)數(shù)據(jù)庫(kù),分析各校歷年就業(yè)率與其獲國(guó)家資源傾斜度的關(guān)系,也能調(diào)節(jié)教育支持的力度,更好地幫扶教育產(chǎn)業(yè)。除此之外,將就業(yè)數(shù)據(jù)庫(kù)數(shù)據(jù)與就業(yè)市場(chǎng)相關(guān)數(shù)據(jù)相比,還能幫助人力資源供需雙方形成更理性的預(yù)期,減少就業(yè)矛盾,實(shí)現(xiàn)人力資源市場(chǎng)的多贏。而學(xué)校通過(guò)廣泛收集歷年大學(xué)生就業(yè)期望、就業(yè)去向等信息,并將其數(shù)據(jù)化,收入數(shù)據(jù)庫(kù),能有效預(yù)測(cè)畢業(yè)生就業(yè)率、就業(yè)去向。

2.2高校應(yīng)推行大數(shù)據(jù)戰(zhàn)略,讓大數(shù)據(jù)走進(jìn)課堂教學(xué),培養(yǎng)大學(xué)生大數(shù)據(jù)意識(shí)

各高校應(yīng)結(jié)合大數(shù)據(jù)時(shí)代特征進(jìn)行教學(xué)改革,推行信息化管理與信息化教學(xué)。學(xué)校的管理與教學(xué)活動(dòng)都存在著固定性與周期性,如對(duì)教師的考核、學(xué)生測(cè)試成績(jī)分析、就業(yè)情況分析等,可以利用計(jì)算機(jī)分析這些數(shù)據(jù)并推薦合適的解決方案;課堂上,教師也應(yīng)順應(yīng)信息化教育,突破傳統(tǒng)的教學(xué)方式,通過(guò)“微學(xué)“”微課”等方式提高學(xué)生的學(xué)習(xí)興趣,從而提高學(xué)習(xí)的效果。同時(shí),知識(shí)點(diǎn)也可以通過(guò)數(shù)據(jù)化與測(cè)試題建立聯(lián)系,計(jì)算機(jī)可以通過(guò)分析錯(cuò)題數(shù)、做題時(shí)間等數(shù)據(jù)為老師提供不同學(xué)生對(duì)于不同知識(shí)點(diǎn)的掌握情況。只有在校園中營(yíng)造一種大數(shù)據(jù)氛圍,培養(yǎng)學(xué)生們利用數(shù)據(jù)分析找尋有用信息的習(xí)慣,才能讓他們具備大數(shù)據(jù)意識(shí),做好走進(jìn)大數(shù)據(jù)時(shí)代職場(chǎng)的準(zhǔn)備。

2.3大學(xué)生要提高數(shù)據(jù)駕馭能力,透過(guò)數(shù)據(jù)看本質(zhì)

大學(xué)生可以多對(duì)社會(huì)熱點(diǎn)問(wèn)題進(jìn)行實(shí)踐調(diào)研,通過(guò)訪談、問(wèn)卷調(diào)查等方式獲取大量真實(shí)數(shù)據(jù),然后通過(guò)整理分析這些數(shù)據(jù)鍛煉自己的數(shù)據(jù)駕馭能力。在整理實(shí)踐調(diào)研的數(shù)據(jù)時(shí),掌握?qǐng)D表分析、數(shù)據(jù)模型及數(shù)據(jù)分析軟件的使用方法,如Hadoop、MapReduce等,提高數(shù)據(jù)分析的工作效率和準(zhǔn)確性。除了加強(qiáng)數(shù)據(jù)分析技術(shù)的學(xué)習(xí)外,也需要補(bǔ)充來(lái)自統(tǒng)計(jì)學(xué)、數(shù)據(jù)挖掘等學(xué)科的理論知識(shí),為數(shù)據(jù)分析提供理論支持。同時(shí),勤思考、多動(dòng)手、多總結(jié)的做法也能幫助大學(xué)生透過(guò)數(shù)據(jù)看本質(zhì)。海量數(shù)據(jù)中不乏有虛假、消極、錯(cuò)誤的數(shù)據(jù)信息,因此大學(xué)生必須具備良好的數(shù)據(jù)分析能力。數(shù)據(jù)分析就是一個(gè)不斷假設(shè)、驗(yàn)證的過(guò)程,耐心、肯鉆研的科學(xué)精神能夠幫助大學(xué)生在一次次的假設(shè)驗(yàn)證后找到本質(zhì)的規(guī)律。通過(guò)不斷地實(shí)踐練習(xí),提高對(duì)數(shù)據(jù)的敏感度、分析能力,為日后職場(chǎng)中更好地開(kāi)展數(shù)據(jù)分析工作打下基礎(chǔ)。

2.4大學(xué)生應(yīng)養(yǎng)成獨(dú)立思考的習(xí)慣,培養(yǎng)邏輯思維和理性思維方式

大數(shù)據(jù)時(shí)代是鼓勵(lì)個(gè)性化的時(shí)代,鼓勵(lì)通過(guò)數(shù)據(jù)挖掘發(fā)現(xiàn)隱藏于數(shù)據(jù)下的種種規(guī)律,要做到這點(diǎn),大學(xué)生必須要有獨(dú)立思考、不受常規(guī)想法束縛的能力。美國(guó)計(jì)算機(jī)專家埃齊奧尼爾購(gòu)買機(jī)票后卻發(fā)現(xiàn)周圍比他買票晚的乘客票價(jià)居然比他的便宜,本來(lái)是再普通不過(guò)的生活現(xiàn)象,但這卻引發(fā)了這位專家的思考。他分析到若獲得美國(guó)每一條航線上每一架飛機(jī)內(nèi)的每一個(gè)座位一年內(nèi)的綜合票價(jià)的數(shù)據(jù)庫(kù),就可以預(yù)測(cè)飛機(jī)票的漲跌勢(shì),為消費(fèi)者提供參考。這樣的思考促使他最終創(chuàng)立了Farecast票價(jià)預(yù)測(cè)工具,顧客平均每張機(jī)票可節(jié)省50美元。獨(dú)立思考不是漫無(wú)目的地想,而是有邏輯地思考。大學(xué)生要注意在日常生活中就養(yǎng)成邏輯推理的習(xí)慣,在問(wèn)“是什么”后還要問(wèn)“為什么”,嘗試通過(guò)自己的推理找到答案,這是大數(shù)據(jù)時(shí)代對(duì)人才的要求。

3結(jié)語(yǔ)

第8篇:大數(shù)據(jù)分析戰(zhàn)略范文

關(guān)鍵詞:大數(shù)據(jù);京津冀協(xié)同;互聯(lián)網(wǎng)

一、引言

生產(chǎn)關(guān)系要適應(yīng)生產(chǎn)力的發(fā)展是人類社會(huì)進(jìn)步的本質(zhì)。而在當(dāng)前,隨著社會(huì)科技的進(jìn)步,傳統(tǒng)的金融服務(wù)難以滿足人們?nèi)找嬖鲩L(zhǎng)的金融服務(wù)需求,商業(yè)銀行積極尋求轉(zhuǎn)型升級(jí)的契機(jī)。這一方面是新常態(tài)經(jīng)濟(jì)背景下金融改革的現(xiàn)實(shí)需求,另一方面也是互聯(lián)網(wǎng)金融發(fā)展的良性刺激所致。作為一種區(qū)別于傳統(tǒng)的直接金融和間接金融的第三種金融模式,互聯(lián)網(wǎng)金融獨(dú)特的優(yōu)勢(shì)挑戰(zhàn)著傳統(tǒng)金融的權(quán)威,改變了人們的生活消費(fèi)習(xí)慣,逐漸成為人們?nèi)粘I钪胁豢苫蛉钡囊徊糠?。?jù)iiMedia Research的研究數(shù)據(jù)顯示,2014年中國(guó)互聯(lián)網(wǎng)金融產(chǎn)品的網(wǎng)民滲透率高達(dá)61.3%,超過(guò)六成的中國(guó)網(wǎng)民使用過(guò)或者正在使用互聯(lián)網(wǎng)金融產(chǎn)品。與此同時(shí),互聯(lián)網(wǎng)金融思維的逐漸深入人心也為傳統(tǒng)金融的發(fā)展提供了新的思路。在信息化時(shí)代,對(duì)數(shù)據(jù)的挖掘與分析深刻地影響著商業(yè)銀行的發(fā)展趨勢(shì)。大數(shù)據(jù)作為互聯(lián)網(wǎng)金融的核心思維和技術(shù)基礎(chǔ),為商業(yè)銀行的轉(zhuǎn)型升級(jí)開(kāi)辟了一條新生路。在中國(guó)金融龐大的消費(fèi)市場(chǎng)下,積極探索大數(shù)據(jù)戰(zhàn)略與銀行轉(zhuǎn)型升級(jí)戰(zhàn)略有機(jī)結(jié)合的并軌研究,一方面可以為商業(yè)銀行轉(zhuǎn)型升級(jí)開(kāi)拓新的實(shí)現(xiàn)路徑,加快銀行轉(zhuǎn)型升級(jí)目標(biāo)的實(shí)現(xiàn),另一方面,商業(yè)銀行轉(zhuǎn)型升級(jí)的客觀需求也為互聯(lián)網(wǎng)金融的創(chuàng)新發(fā)展提供強(qiáng)大的驅(qū)動(dòng)力。基于互聯(lián)網(wǎng)思維,充分利用大數(shù)據(jù)、云服務(wù)等先進(jìn)的網(wǎng)絡(luò)技術(shù)手段來(lái)實(shí)現(xiàn)商業(yè)銀行在信息化時(shí)代的轉(zhuǎn)型升級(jí),成為當(dāng)前銀行發(fā)展的必由之路。因此,準(zhǔn)確地分析商業(yè)銀行在互聯(lián)網(wǎng)金融背景下實(shí)施大數(shù)據(jù)戰(zhàn)略的內(nèi)外部環(huán)境,確定科學(xué)的發(fā)展目標(biāo)和戰(zhàn)略定位是銀行實(shí)施大數(shù)據(jù)轉(zhuǎn)型戰(zhàn)略的必要前提。同時(shí),商業(yè)銀行必須根據(jù)自身發(fā)展特點(diǎn),圍繞科學(xué)的戰(zhàn)略目標(biāo),切實(shí)采取具有前瞻性的戰(zhàn)略措施,以保障銀行未來(lái)發(fā)展的持續(xù)與穩(wěn)定。

二、文獻(xiàn)綜述

(一)大數(shù)據(jù)概述

(二)銀行轉(zhuǎn)型與大數(shù)據(jù)關(guān)系研究現(xiàn)狀

因此,基于開(kāi)放、共享、平等的互聯(lián)網(wǎng)金融思維,構(gòu)建商業(yè)銀行的大數(shù)據(jù)經(jīng)營(yíng)管理戰(zhàn)略對(duì)于銀行轉(zhuǎn)型至關(guān)重要。在商業(yè)銀行未來(lái)的長(zhǎng)期發(fā)展過(guò)程中,隨著網(wǎng)絡(luò)化、信息化金融模式的不斷成熟,對(duì)于大數(shù)據(jù)思維的應(yīng)用是一個(gè)具有前瞻性、全局性的戰(zhàn)略方向。

三、大數(shù)據(jù)戰(zhàn)略實(shí)施的內(nèi)外部環(huán)境分析

商業(yè)銀行實(shí)施大數(shù)據(jù)戰(zhàn)略的本質(zhì)是為了明確銀行在互聯(lián)網(wǎng)金融時(shí)展的方向。而一個(gè)明確的戰(zhàn)略管理過(guò)程通常包括明確戰(zhàn)略目標(biāo)、分析戰(zhàn)略環(huán)境、制定戰(zhàn)略方案、實(shí)施和評(píng)估戰(zhàn)略四個(gè)階段。這四個(gè)階段不斷調(diào)整,形成一個(gè)循環(huán)的系統(tǒng),如圖1所示。因此,在進(jìn)行商業(yè)銀行大數(shù)據(jù)轉(zhuǎn)型戰(zhàn)略的定位時(shí),首先需要對(duì)銀行內(nèi)外部環(huán)境進(jìn)行深度分析。在互聯(lián)網(wǎng)金融和信息化經(jīng)濟(jì)的時(shí)代背景下,借助SWOT分析法對(duì)商業(yè)銀行轉(zhuǎn)型升級(jí)的外部機(jī)會(huì)與威脅、內(nèi)部?jī)?yōu)勢(shì)與劣勢(shì)進(jìn)行分析,為大數(shù)據(jù)戰(zhàn)略的最優(yōu)選擇提供依據(jù)。

(一)銀行大數(shù)據(jù)戰(zhàn)略SWOT要素分析

2、內(nèi)部劣勢(shì)分析。在大數(shù)據(jù)戰(zhàn)略實(shí)施的初期,商業(yè)銀行由于其自身的限制,受到互聯(lián)網(wǎng)金融的沖擊,銀行經(jīng)營(yíng)管理面臨巨大的挑戰(zhàn),其劣勢(shì)集中體現(xiàn)在數(shù)據(jù)處理能力不足和法律保障缺失兩個(gè)方面。在數(shù)據(jù)的收集和處理上,銀行不僅需要收集來(lái)自物理網(wǎng)點(diǎn)、消費(fèi)者賬戶的結(jié)構(gòu)化數(shù)據(jù),更需要來(lái)自移動(dòng)互聯(lián)網(wǎng)、電商平臺(tái)以及社交網(wǎng)站的非結(jié)構(gòu)化數(shù)據(jù)信息。然而,如今商業(yè)銀行還處于大數(shù)據(jù)運(yùn)行模式的探索期,由于缺乏專業(yè)的數(shù)據(jù)分析人才,傳統(tǒng)的事物型數(shù)據(jù)庫(kù)難以滿足海量數(shù)據(jù)非結(jié)構(gòu)化數(shù)據(jù)的分析需求,對(duì)于大數(shù)據(jù)的分析處理缺乏精準(zhǔn)有效的技術(shù)支持,嚴(yán)重限制了商業(yè)銀行的數(shù)據(jù)處理能力和銀行競(jìng)爭(zhēng)力的提高。在法律保障上,大數(shù)據(jù)與商業(yè)銀行的跨界融合是金融創(chuàng)新理念在互聯(lián)網(wǎng)經(jīng)濟(jì)時(shí)代的成功應(yīng)用,然而互聯(lián)網(wǎng)行業(yè)與金融行業(yè)本質(zhì)上的區(qū)別導(dǎo)致大數(shù)據(jù)與銀行業(yè)的商業(yè)規(guī)范、監(jiān)管模式存在明顯差異。商業(yè)銀行作為現(xiàn)代金融的合規(guī)行業(yè),受到嚴(yán)格的法律約束和金融監(jiān)管機(jī)構(gòu)的監(jiān)督,而互聯(lián)網(wǎng)領(lǐng)域的大數(shù)據(jù)并不受其限制,至今為止,還沒(méi)有一部專門的法律對(duì)大數(shù)據(jù)在金融行業(yè)中的應(yīng)用進(jìn)行規(guī)范。因此,缺乏明確的法律法規(guī)和規(guī)章制度的保障導(dǎo)致銀行大數(shù)據(jù)戰(zhàn)略無(wú)法可依,這勢(shì)必會(huì)造成銀行大數(shù)據(jù)的濫用,威脅商業(yè)銀行的持續(xù)發(fā)展。

4、外部威脅分析。將大數(shù)據(jù)思維融入銀行轉(zhuǎn)型升級(jí)戰(zhàn)略順應(yīng)了互聯(lián)網(wǎng)金融時(shí)代商業(yè)銀行的發(fā)展要求。然而互聯(lián)網(wǎng)金融企業(yè)的競(jìng)爭(zhēng)以及大數(shù)據(jù)本身存在的風(fēng)險(xiǎn)為商業(yè)銀行實(shí)施大數(shù)據(jù)轉(zhuǎn)型戰(zhàn)略帶來(lái)了巨大的威脅。一方面,與傳統(tǒng)銀行業(yè)相比,互聯(lián)網(wǎng)金融模式具有資金配置效率高、交易成本低、支付便捷、普惠性等特點(diǎn),打破了傳統(tǒng)銀行業(yè)時(shí)間和空間的限制,給人們帶來(lái)了前所未有的高效、便捷的用戶體驗(yàn)以及更具可得性的實(shí)際利益。2014年10月互聯(lián)網(wǎng)巨頭阿里巴巴成立螞蟻金融服務(wù)公司,業(yè)務(wù)囊括了支付、貸款、理財(cái)、保險(xiǎn)等諸多金融服務(wù),阿里金融帝國(guó)逐漸成型;百度推出百度財(cái)富,打造專業(yè)化的金融服務(wù)平臺(tái),全面涉及金融業(yè)務(wù);騰訊在其龐大的用戶資源的基礎(chǔ)上,借助大數(shù)據(jù)、云計(jì)算等技術(shù),大力開(kāi)展支付、理財(cái)業(yè)務(wù)?;ヂ?lián)網(wǎng)企業(yè)加快布局金融業(yè),對(duì)整個(gè)銀行業(yè)產(chǎn)生全面而持續(xù)的沖擊,這在很大程度上擠占了原本屬于傳統(tǒng)銀行業(yè)的利潤(rùn)空間。另一方面,大數(shù)據(jù)的風(fēng)險(xiǎn)威脅主要表現(xiàn)為兩點(diǎn):一是信息扭曲風(fēng)險(xiǎn),在大數(shù)據(jù)信息爆炸年代,數(shù)據(jù)量的大幅增加導(dǎo)致了規(guī)律的喪失與數(shù)據(jù)的嚴(yán)重失真,大量無(wú)序、低效的無(wú)用信息混進(jìn)數(shù)據(jù)庫(kù)形成信息噪聲,增加了信息誤讀的風(fēng)險(xiǎn)。信息的扭曲加劇了市場(chǎng)波動(dòng),造成市場(chǎng)失靈;二是信息安全風(fēng)險(xiǎn),大數(shù)據(jù)時(shí)代強(qiáng)調(diào)社會(huì)信息資源的開(kāi)放與共享,然而隨著虛擬網(wǎng)絡(luò)技術(shù)的不斷進(jìn)步,網(wǎng)絡(luò)信息安全問(wèn)題越來(lái)越受到人們的關(guān)注。網(wǎng)絡(luò)系統(tǒng)與數(shù)據(jù)中心存在的漏洞導(dǎo)致大量客戶信息和個(gè)人隱私的泄露,棱鏡門事件、支付寶漏洞以及攜程網(wǎng)用戶支付信息泄露等一系列信息安全事件的爆發(fā),嚴(yán)重地威脅了企業(yè)的發(fā)展和消費(fèi)者的人身安全。商業(yè)銀行運(yùn)用云服務(wù)、云平臺(tái)構(gòu)建大數(shù)據(jù)終端來(lái)實(shí)現(xiàn)數(shù)據(jù)資源的共享,但是同時(shí)也伴隨著一定的風(fēng)險(xiǎn),一旦數(shù)據(jù)泄露,將會(huì)對(duì)銀行業(yè)務(wù)經(jīng)營(yíng)以及客戶安全造成極大的安全隱患。

(二)銀行大數(shù)據(jù)戰(zhàn)略SWOT矩陣分析

在對(duì)商業(yè)銀行大數(shù)據(jù)轉(zhuǎn)型戰(zhàn)略的外部機(jī)會(huì)與威脅、內(nèi)部?jī)?yōu)勢(shì)與劣勢(shì)進(jìn)行SWOT分析的基礎(chǔ)上構(gòu)建SWOT矩陣分析策略,為實(shí)現(xiàn)商業(yè)銀行大數(shù)據(jù)戰(zhàn)略的長(zhǎng)期目標(biāo),制定了一整套戰(zhàn)略選擇路徑以及具體的實(shí)施方案。根據(jù)戰(zhàn)略制定的基本思路,通過(guò)發(fā)揮優(yōu)勢(shì)、克服劣勢(shì)、利用機(jī)會(huì)、化解威脅,商業(yè)銀行大數(shù)據(jù)戰(zhàn)略的實(shí)施可具體分為四種路徑(見(jiàn)表1):

1、SO戰(zhàn)略(增長(zhǎng)型戰(zhàn)略)的關(guān)鍵在于依靠?jī)?nèi)部力量,洞察外部環(huán)境。在大數(shù)據(jù)戰(zhàn)略制定的初級(jí)階段,商業(yè)銀行最主要的任務(wù)是在充分發(fā)揮自身優(yōu)勢(shì)的基礎(chǔ)上,保持良好的市場(chǎng)洞察力,利用外部環(huán)境發(fā)展自身。利用豐富的數(shù)據(jù)資源優(yōu)勢(shì)、雄厚的資本優(yōu)勢(shì)以及專業(yè)的人才優(yōu)勢(shì)建立大數(shù)據(jù)平臺(tái),構(gòu)建云計(jì)算服務(wù)器,為大數(shù)據(jù)戰(zhàn)略的實(shí)施打下堅(jiān)實(shí)的設(shè)備基礎(chǔ)。同時(shí),深入了解市場(chǎng)發(fā)展動(dòng)態(tài),明確國(guó)家政策導(dǎo)向以規(guī)劃市場(chǎng)布局,依靠不斷進(jìn)步的互聯(lián)網(wǎng)技術(shù)與大數(shù)據(jù)手段將銀行產(chǎn)品通過(guò)線上渠道擴(kuò)大市場(chǎng),拓展銀行利潤(rùn)空間。

2、WO戰(zhàn)略(扭轉(zhuǎn)型戰(zhàn)略)是大數(shù)據(jù)戰(zhàn)略進(jìn)入規(guī)范階段,商業(yè)銀行利用外部機(jī)會(huì),克服內(nèi)部弱點(diǎn)的一種穩(wěn)定型發(fā)展路徑。商業(yè)銀行大數(shù)據(jù)戰(zhàn)略制定的關(guān)鍵在于充分利用市場(chǎng)潛藏的機(jī)遇,學(xué)習(xí)互聯(lián)網(wǎng)金融企業(yè)的先進(jìn)技術(shù),加強(qiáng)對(duì)銀行內(nèi)外部數(shù)據(jù)的收集與整理,培養(yǎng)數(shù)據(jù)分析人才,打造一支更具專業(yè)性的大數(shù)據(jù)人才隊(duì)伍,克服銀行數(shù)據(jù)處理能力不足的弱點(diǎn),規(guī)范服務(wù)流程以提高業(yè)務(wù)辦理效率。此外,在各銀行之間建立云共享數(shù)據(jù)平臺(tái),制定統(tǒng)一的大數(shù)據(jù)運(yùn)行規(guī)則,同業(yè)之間相互學(xué)習(xí)、相互監(jiān)督,形成規(guī)范化的行業(yè)準(zhǔn)則,以彌補(bǔ)法律保障的缺失。

3、ST戰(zhàn)略(多元化戰(zhàn)略)要求商業(yè)銀行發(fā)揮內(nèi)部?jī)?yōu)勢(shì),規(guī)避外部威脅。在激烈的市場(chǎng)環(huán)境中,商業(yè)銀行面臨的不僅是同業(yè)的競(jìng)爭(zhēng),更有互聯(lián)網(wǎng)金融企業(yè)的威脅。深入挖掘自身特點(diǎn),走差異化發(fā)展之路是銀行贏得市場(chǎng)先機(jī)的基本策略。面對(duì)互聯(lián)網(wǎng)金融的沖擊,商業(yè)銀行必須加強(qiáng)與互聯(lián)網(wǎng)企業(yè)的合作與交流,建立客戶信息共享機(jī)制,打破信息孤島以提升銀行的數(shù)據(jù)整合能力,同時(shí)加快建立大數(shù)據(jù)的風(fēng)險(xiǎn)防范制度體系,防范銀行數(shù)據(jù)的信息安全風(fēng)險(xiǎn)。

4、WT戰(zhàn)略(防御型戰(zhàn)略)是商業(yè)銀行在內(nèi)部阻力和外部沖擊雙重因素制約下的必然選擇。在此階段,商業(yè)銀行需要進(jìn)一步分析和調(diào)查銀行大數(shù)據(jù)運(yùn)用的風(fēng)險(xiǎn),以審慎的態(tài)度推進(jìn)銀行轉(zhuǎn)型。互聯(lián)網(wǎng)金融的發(fā)展導(dǎo)致銀行客戶和資金的大量流失,采用防御型戰(zhàn)略要求商業(yè)銀行以規(guī)范的操作流程,完善的管理制度,健全的培養(yǎng)機(jī)制做支撐,全面開(kāi)展與互聯(lián)網(wǎng)企業(yè)的合作競(jìng)爭(zhēng),進(jìn)行優(yōu)勢(shì)互補(bǔ),通過(guò)科研創(chuàng)新與品牌建設(shè)逐個(gè)擊破外部挑戰(zhàn),重塑商業(yè)銀行內(nèi)部競(jìng)爭(zhēng)力。

無(wú)論是增長(zhǎng)型戰(zhàn)略、扭轉(zhuǎn)型戰(zhàn)略,還是多元化戰(zhàn)略、防御型戰(zhàn)略,在商業(yè)銀行戰(zhàn)略轉(zhuǎn)型的不同階段都有與之相對(duì)應(yīng)的戰(zhàn)略規(guī)劃內(nèi)容和實(shí)施方式,銀行對(duì)不同戰(zhàn)略路徑的選擇必須符合銀行不同轉(zhuǎn)型期的特定要求,但是商業(yè)銀行大數(shù)據(jù)戰(zhàn)略實(shí)施的全過(guò)程必定是一個(gè)不斷學(xué)習(xí)、創(chuàng)新與發(fā)展的過(guò)程。

四、商業(yè)銀行大數(shù)據(jù)戰(zhàn)略目標(biāo)與路徑選擇

在未來(lái)的銀行業(yè)競(jìng)爭(zhēng)中,對(duì)于數(shù)據(jù)的分析和挖掘?qū)⒊蔀闆Q定銀行經(jīng)營(yíng)成敗的關(guān)鍵。隨著互聯(lián)網(wǎng)金融理念的不斷深入,實(shí)施大數(shù)據(jù)戰(zhàn)略對(duì)推動(dòng)銀行業(yè)的轉(zhuǎn)型升級(jí)意義重大。商業(yè)銀行大數(shù)據(jù)戰(zhàn)略目標(biāo)的設(shè)定是其轉(zhuǎn)型升級(jí)的具象化表現(xiàn),而戰(zhàn)略路徑的選擇則是商業(yè)銀行在既定戰(zhàn)略目標(biāo)指導(dǎo)下實(shí)施轉(zhuǎn)型升級(jí)的具體方案。

(一) 大數(shù)據(jù)戰(zhàn)略目標(biāo)

大數(shù)據(jù)戰(zhàn)略是商業(yè)銀行在互聯(lián)網(wǎng)金融背景下運(yùn)用大數(shù)據(jù)思維實(shí)現(xiàn)轉(zhuǎn)型升級(jí)的進(jìn)一步探索?;谏虡I(yè)銀行轉(zhuǎn)型的定位,大數(shù)據(jù)戰(zhàn)略目標(biāo)具體包括客戶中心目標(biāo)、經(jīng)濟(jì)發(fā)展目標(biāo)和風(fēng)險(xiǎn)管理目標(biāo)。

1、客戶中心目標(biāo)。實(shí)現(xiàn)商業(yè)銀行的戰(zhàn)略轉(zhuǎn)型必須以滿足客戶的真實(shí)金融需求為前提。及時(shí)、準(zhǔn)確地把握客戶需求是實(shí)現(xiàn)新時(shí)代開(kāi)放式普惠金融的基本要求,離開(kāi)了以客戶為中心的經(jīng)營(yíng)理念,銀行的轉(zhuǎn)型將會(huì)迷失方向。商業(yè)銀行引入大數(shù)據(jù)思維服務(wù)于銀行經(jīng)營(yíng)管理的創(chuàng)新,關(guān)鍵在于深入客戶群體,全方位評(píng)估客戶需求,準(zhǔn)確把握市場(chǎng)動(dòng)向,為消費(fèi)者提供更具針對(duì)性、合理性的產(chǎn)品和服務(wù),確切落實(shí)商業(yè)銀行的戰(zhàn)略轉(zhuǎn)型目標(biāo)。因此,銀行大數(shù)據(jù)客戶中心目標(biāo)可以概括為基于客戶信息分析,以客戶需求為導(dǎo)向,構(gòu)建銀行客戶管理大數(shù)據(jù)分析和應(yīng)用平臺(tái)。

2、經(jīng)濟(jì)發(fā)展目標(biāo)。服務(wù)于實(shí)體經(jīng)濟(jì)的轉(zhuǎn)型發(fā)展是商業(yè)銀行大數(shù)據(jù)戰(zhàn)略轉(zhuǎn)型的根本方向。實(shí)體經(jīng)濟(jì)是銀行業(yè)發(fā)展的根基,脫離實(shí)體經(jīng)濟(jì)的金融創(chuàng)新只會(huì)帶來(lái)更大的金融風(fēng)險(xiǎn)。商業(yè)銀行引入大數(shù)據(jù)思維的金融創(chuàng)新必須以實(shí)體經(jīng)濟(jì)發(fā)展的需求為導(dǎo)向,不斷優(yōu)化實(shí)體經(jīng)濟(jì)的資源配置,重視三農(nóng)經(jīng)濟(jì)的發(fā)展與小微企業(yè)的融資,助推普惠金融的實(shí)現(xiàn)。尤其是在當(dāng)前經(jīng)濟(jì)新常態(tài)下,經(jīng)濟(jì)下行壓力持續(xù),銀行應(yīng)該充分利用大數(shù)據(jù)、云計(jì)算等互聯(lián)網(wǎng)技術(shù)優(yōu)勢(shì)拓寬服務(wù)實(shí)體經(jīng)濟(jì)的渠道,創(chuàng)新服務(wù)手段,以提高資金使用效率。商業(yè)銀行只有以支持實(shí)體經(jīng)濟(jì)發(fā)展為核心,才能實(shí)現(xiàn)金融業(yè)和實(shí)體經(jīng)濟(jì)的共生共榮。

3、風(fēng)險(xiǎn)管理目標(biāo)。風(fēng)險(xiǎn)管理是決定商業(yè)銀行轉(zhuǎn)型成敗的關(guān)鍵。商業(yè)銀行作為經(jīng)營(yíng)風(fēng)險(xiǎn)的特殊行業(yè),完備的風(fēng)險(xiǎn)管理體系是其生存與發(fā)展的基本保障。風(fēng)險(xiǎn)的產(chǎn)生是由信息不對(duì)稱造成的,商業(yè)銀行傳統(tǒng)的信用風(fēng)險(xiǎn)決策主要依據(jù)客戶的基本經(jīng)濟(jì)情況、信用記錄、抵押擔(dān)保以及客戶經(jīng)理的現(xiàn)場(chǎng)調(diào)查等結(jié)構(gòu)化數(shù)據(jù)進(jìn)行經(jīng)驗(yàn)判斷,缺乏量化數(shù)據(jù)的支持,準(zhǔn)確度難以得到保障。而大數(shù)據(jù)在商業(yè)銀行中的應(yīng)用在很大程度上緩解了銀行與客戶之間的信息不對(duì)稱問(wèn)題,以大數(shù)據(jù)思維進(jìn)行銀行風(fēng)險(xiǎn)管理的變革,通過(guò)大量數(shù)據(jù)信息法人深度挖掘來(lái)進(jìn)行風(fēng)險(xiǎn)識(shí)別,提升銀行整體的風(fēng)險(xiǎn)防控能力。

(二)大數(shù)據(jù)戰(zhàn)略路徑

1、樹(shù)立大數(shù)據(jù)理念,持續(xù)提升商業(yè)銀行大數(shù)據(jù)核心競(jìng)爭(zhēng)力。黨的十報(bào)告明確提出走中國(guó)特色新型工業(yè)化、信息化、城鎮(zhèn)化、農(nóng)業(yè)現(xiàn)代化道路的目標(biāo),信息化已上升為國(guó)家戰(zhàn)略的高度。在互聯(lián)網(wǎng)金融的時(shí)代背景下,以大數(shù)據(jù)思維推動(dòng)銀行的轉(zhuǎn)型升級(jí)不僅有利于加快我國(guó)信息化、智能型銀行建設(shè)的步伐,而且對(duì)于促進(jìn)我國(guó)信息經(jīng)濟(jì)發(fā)展、服務(wù)新四化具有不可估量的作用。因此,商業(yè)銀行管理層應(yīng)通過(guò)頂層設(shè)計(jì)提高大數(shù)據(jù)理念的戰(zhàn)略高度,充分認(rèn)識(shí)大數(shù)據(jù)資源在商業(yè)銀行戰(zhàn)略轉(zhuǎn)型中的重要地位,以大數(shù)據(jù)作為推動(dòng)銀行改革創(chuàng)新的內(nèi)在引擎。第一,培養(yǎng)商業(yè)銀行的大數(shù)據(jù)核心處理能力。強(qiáng)化數(shù)據(jù)整合能力,以銀行內(nèi)部數(shù)據(jù)為基礎(chǔ),充分利用大數(shù)據(jù)鏈條上的社會(huì)化數(shù)據(jù),形成統(tǒng)一的數(shù)據(jù)標(biāo)準(zhǔn),便于進(jìn)行規(guī)范化的數(shù)據(jù)交換與融合;強(qiáng)化數(shù)據(jù)挖掘與分析處理能力,在全行推廣決策基于數(shù)據(jù),信息創(chuàng)造價(jià)值的觀念,引進(jìn)專業(yè)化數(shù)據(jù)挖掘與大數(shù)據(jù)分析工具,以大數(shù)據(jù)思維進(jìn)行業(yè)務(wù)邏輯模式的再造,提高非結(jié)構(gòu)化數(shù)據(jù)轉(zhuǎn)化為決策支持信息的效率。第二,深化數(shù)據(jù)治理,持續(xù)提高數(shù)據(jù)質(zhì)量。充分認(rèn)識(shí)數(shù)據(jù)治理在大數(shù)據(jù)分析過(guò)程中的重要作用,積極推進(jìn)數(shù)據(jù)標(biāo)準(zhǔn)化管理機(jī)制的建設(shè)。制定完備的數(shù)據(jù)構(gòu)架規(guī)劃和數(shù)據(jù)生命周期管理規(guī)范,從制度上規(guī)范銀行數(shù)據(jù)的使用。建立多維度數(shù)據(jù)倉(cāng)庫(kù),將分散化數(shù)據(jù)信息按照客戶、渠道、產(chǎn)品等多種類別進(jìn)行合理的整合與儲(chǔ)存,形成全行統(tǒng)一的數(shù)據(jù)格式,提高數(shù)據(jù)的利用效率。同時(shí),加強(qiáng)數(shù)據(jù)查詢平臺(tái)的建設(shè),滿足銀行各部門的數(shù)據(jù)查詢需求,及時(shí)提取各類交易數(shù)據(jù),響應(yīng)數(shù)據(jù)監(jiān)管部門的數(shù)據(jù)審核要求。第三,完善銀行大數(shù)據(jù)工作管理體系。在銀行內(nèi)部建立總―分式大數(shù)據(jù)工作機(jī)制,制定全行大數(shù)據(jù)工作規(guī)劃,實(shí)行逐層推進(jìn)。建立大數(shù)據(jù)主管部門負(fù)責(zé)統(tǒng)籌工作規(guī)劃,集中管理銀行數(shù)據(jù),設(shè)立大數(shù)據(jù)業(yè)務(wù)部門負(fù)責(zé)數(shù)據(jù)整合與分析,成立大數(shù)據(jù)工作小組,全面收集商業(yè)銀行內(nèi)外部各類數(shù)據(jù)信息,形成一個(gè)統(tǒng)一的大數(shù)據(jù)管理體系,打造銀行業(yè)在大數(shù)據(jù)時(shí)代的核心競(jìng)爭(zhēng)力。

2、全面整合銀行內(nèi)外部數(shù)據(jù),搭建商業(yè)銀行大數(shù)據(jù)平臺(tái)。傳統(tǒng)的數(shù)據(jù)處理只要致力于對(duì)結(jié)構(gòu)化數(shù)據(jù)的分析與整合,然而在大數(shù)據(jù)背景下,傳統(tǒng)的數(shù)據(jù)庫(kù)已無(wú)法滿足大量半結(jié)構(gòu)化,甚至非結(jié)構(gòu)化數(shù)據(jù)的處理要求。因此,必須加快建立商業(yè)銀行大數(shù)據(jù)分析平臺(tái),整合銀行內(nèi)部自然數(shù)據(jù),協(xié)同外部社會(huì)化數(shù)據(jù),完善大數(shù)據(jù)環(huán)境下的銀行數(shù)據(jù)分析,提高銀行決策效率。一方面,全面整合銀行內(nèi)部數(shù)據(jù)。銀行作為整個(gè)金融業(yè)的核心領(lǐng)域,在與客戶聯(lián)系的過(guò)程中,積累了大量的信息數(shù)據(jù)。從現(xiàn)有客戶的屬性資料、賬戶信息,包括客戶的性別、年齡、職業(yè)、收入和資產(chǎn)狀況,到客戶的交易信息、渠道信息和行為信息,包括交易時(shí)間、交易類型以及消費(fèi)偏好。商業(yè)銀行必須以內(nèi)部信息技術(shù)系統(tǒng)為基礎(chǔ),整合銀行內(nèi)部各業(yè)務(wù)單位的客戶關(guān)系信息,將各類渠道所有交易中的客戶信息、記錄綜合起來(lái),建立一個(gè)統(tǒng)一的數(shù)據(jù)分析平臺(tái),為銀行經(jīng)營(yíng)決策奠定數(shù)據(jù)基礎(chǔ)。另一方面,綜合利用外部社會(huì)化數(shù)據(jù)。商業(yè)銀行必須重視加強(qiáng)對(duì)各類數(shù)據(jù)的收集和積累,打破傳統(tǒng)數(shù)據(jù)邊界,注重加強(qiáng)與社交網(wǎng)絡(luò)、電商企業(yè)等大數(shù)據(jù)平臺(tái)的交流與合作。商業(yè)銀行在完善自身數(shù)據(jù)的基礎(chǔ)上,積極建立與網(wǎng)絡(luò)媒體的數(shù)據(jù)共享機(jī)制,通過(guò)多渠道獲取更多的消費(fèi)者數(shù)據(jù)信息。充分利用社交網(wǎng)絡(luò)、論壇、微博、微信平臺(tái)等新媒體工具整合現(xiàn)代化客戶交流渠道,增強(qiáng)與客戶的互動(dòng)聯(lián)系,打造人性化的銀行品牌形象,維護(hù)良好的客戶關(guān)系。同時(shí)加強(qiáng)與電信、電商等互聯(lián)網(wǎng)企業(yè)合作,加強(qiáng)數(shù)據(jù)信息共享互利,促進(jìn)金融服務(wù)與電子商務(wù)、移動(dòng)網(wǎng)絡(luò)的融合。在統(tǒng)一的大數(shù)據(jù)平臺(tái)的基礎(chǔ)上,深入挖掘客戶信息,形成統(tǒng)一的數(shù)據(jù)化客戶管理,實(shí)現(xiàn)客戶分類的精細(xì)化,并針對(duì)不同客戶群體的獨(dú)特需求提供個(gè)性化服務(wù)。

4、以大數(shù)據(jù)思維完善風(fēng)險(xiǎn)管理,提升銀行風(fēng)險(xiǎn)識(shí)別和計(jì)量水平。平衡收益與風(fēng)險(xiǎn)是銀行維持長(zhǎng)久發(fā)展的根本保障。隨著利率市場(chǎng)化程度的不斷加深,外部市場(chǎng)環(huán)境日益復(fù)雜,商業(yè)銀行面臨的流動(dòng)性問(wèn)題愈加嚴(yán)峻。面臨不斷提高的風(fēng)險(xiǎn)管理要求,商業(yè)銀行引入大數(shù)據(jù)思維,樹(shù)立用數(shù)據(jù)防風(fēng)險(xiǎn)的新型風(fēng)險(xiǎn)管理理念。在大量的金融及非金融數(shù)據(jù)中,通過(guò)機(jī)器學(xué)習(xí),不斷總結(jié)數(shù)據(jù)之間的內(nèi)在關(guān)系,運(yùn)用大數(shù)據(jù)相關(guān)關(guān)系分析法,結(jié)合機(jī)器算法模型找出隱藏在海量數(shù)據(jù)中的客戶與風(fēng)險(xiǎn)之間的量化關(guān)系。充分利用銀行內(nèi)部歷史數(shù)據(jù)以及阿里巴巴B2B、人人貸、淘寶等電商平臺(tái)上積累的海量客戶信用信息與行為數(shù)據(jù),通過(guò)互聯(lián)網(wǎng)數(shù)據(jù)模型和在線資信調(diào)查,結(jié)合第三方驗(yàn)證形成交叉檢驗(yàn),確認(rèn)客戶信息,進(jìn)行信用評(píng)級(jí),并根據(jù)客戶的信用等級(jí)實(shí)行差異化的貸款定價(jià)。數(shù)據(jù)規(guī)模的優(yōu)勢(shì)可以彌補(bǔ)數(shù)據(jù)質(zhì)量的不足,并在極短的時(shí)間內(nèi)對(duì)海量原始數(shù)據(jù)進(jìn)行分析,更精確地評(píng)估客戶的信用風(fēng)險(xiǎn)。同時(shí),依托大數(shù)據(jù),搭建風(fēng)險(xiǎn)計(jì)量與欺詐防范模型,實(shí)行現(xiàn)場(chǎng)跟蹤調(diào)查與非現(xiàn)場(chǎng)信息分析相結(jié)合、數(shù)據(jù)定量判斷與經(jīng)驗(yàn)定性判斷相結(jié)合,研究對(duì)授信客戶從貸前到貸后全生命周期的風(fēng)險(xiǎn)監(jiān)測(cè)手段,建立綜合式的風(fēng)險(xiǎn)監(jiān)控中心。注重貸后持續(xù)的風(fēng)險(xiǎn)監(jiān)測(cè),由大數(shù)據(jù)系統(tǒng)根據(jù)客戶的歷史數(shù)據(jù)對(duì)其貸款額度和貸款利率進(jìn)行每月動(dòng)態(tài)調(diào)整,實(shí)時(shí)跟蹤客戶交易,若出現(xiàn)交易、存款等大幅度變動(dòng)的異常情況,及時(shí)進(jìn)行現(xiàn)場(chǎng)審查,以確保貸款安全。此外,在運(yùn)用大數(shù)據(jù)技術(shù)完善風(fēng)險(xiǎn)管理的同時(shí),還需要注重對(duì)大數(shù)據(jù)風(fēng)險(xiǎn)的監(jiān)督和管理。為了確保大數(shù)據(jù)安全,必須將大數(shù)據(jù)納入全面風(fēng)險(xiǎn)管理系統(tǒng)中進(jìn)行統(tǒng)一管控。加強(qiáng)銀行數(shù)據(jù)的自我監(jiān)督,協(xié)同數(shù)據(jù)共享平臺(tái)的各類企業(yè)和機(jī)構(gòu),制定規(guī)范的數(shù)據(jù)安全標(biāo)準(zhǔn),提升整體數(shù)據(jù)安全質(zhì)量。同時(shí),加強(qiáng)與客戶的交流與溝通,提高客戶的數(shù)據(jù)安全意識(shí),規(guī)范數(shù)據(jù)來(lái)源,確保數(shù)據(jù)安全。

5、加強(qiáng)大數(shù)據(jù)人才隊(duì)伍建設(shè),營(yíng)造商業(yè)銀行大數(shù)據(jù)文化氛圍。大數(shù)據(jù)時(shí)代,隨著海量數(shù)據(jù)信息的爆炸式增長(zhǎng),商業(yè)銀行內(nèi)部數(shù)據(jù)不再僅限于客戶的基本自然數(shù)據(jù),其數(shù)據(jù)的種類與規(guī)??焖倥蛎?,傳統(tǒng)的數(shù)據(jù)管理系統(tǒng)已很難做出準(zhǔn)確的客戶分析。對(duì)于當(dāng)前的大數(shù)據(jù)分析而言,需要分析人員具有更強(qiáng)的數(shù)據(jù)分析解讀能力和應(yīng)變能力。他們不僅需要精通數(shù)據(jù)建模和信息挖掘,還需要具備良好的銀行業(yè)務(wù)知識(shí),能夠?qū)⒋髷?shù)據(jù)分析技術(shù)與銀行業(yè)務(wù)完美地結(jié)合起來(lái),其關(guān)鍵在于打造一支屬于銀行的專業(yè)化復(fù)合型大數(shù)據(jù)分析團(tuán)隊(duì)。因此,各商業(yè)銀行應(yīng)積極實(shí)施人才戰(zhàn)略,重點(diǎn)推進(jìn)大數(shù)據(jù)人才隊(duì)伍建設(shè)。重視人力資源管理,完善員工收入分配制度,激發(fā)員工工作的積極性與創(chuàng)造性,增強(qiáng)團(tuán)隊(duì)凝聚力。加強(qiáng)對(duì)銀行員工的大數(shù)據(jù)分析培訓(xùn),重點(diǎn)培養(yǎng)其基礎(chǔ)金融知識(shí)、大數(shù)據(jù)理念、數(shù)學(xué)建模、新型計(jì)算機(jī)方法等復(fù)合型技能,打造專業(yè)化的大數(shù)據(jù)分析團(tuán)隊(duì)。完善銀行崗位的設(shè)置,在培養(yǎng)自己的大數(shù)據(jù)分析人才的同時(shí),注重引進(jìn)外界優(yōu)秀的大數(shù)據(jù)人才,全面提高銀行員工整體的素質(zhì),營(yíng)造良好的商業(yè)銀行互聯(lián)網(wǎng)金融文化氛圍。

五、結(jié)束語(yǔ)

技術(shù)的創(chuàng)新往往帶來(lái)產(chǎn)業(yè)的變革,以大數(shù)據(jù)為核心的新一代網(wǎng)絡(luò)技術(shù)創(chuàng)新突破了傳統(tǒng)金融理念,改變了人們的日常生活和金融生活。互聯(lián)網(wǎng)金融的興起給傳統(tǒng)銀行業(yè)帶來(lái)的不僅是挑戰(zhàn),更是一種變革的機(jī)遇。以大數(shù)據(jù)思維為指導(dǎo)推動(dòng)商業(yè)銀行的轉(zhuǎn)型升級(jí)符合互聯(lián)網(wǎng)金融時(shí)代銀行業(yè)的發(fā)展要求,有助于在長(zhǎng)期中培養(yǎng)銀行的核心競(jìng)爭(zhēng)力,搶占市場(chǎng)競(jìng)爭(zhēng)制高點(diǎn)。然而,金融創(chuàng)新與金融風(fēng)險(xiǎn)相生相伴,大數(shù)據(jù)所具有的信息安全風(fēng)險(xiǎn)如果管理不善,其本身很可能會(huì)演變成大風(fēng)險(xiǎn),信息安全更是關(guān)乎國(guó)家政治安全、經(jīng)濟(jì)發(fā)展以及社會(huì)的和諧與穩(wěn)定。因此,在移動(dòng)互聯(lián)的浪潮下,政府部門需要從國(guó)家立法的角度來(lái)完善大數(shù)據(jù)監(jiān)管體系,保護(hù)消費(fèi)者利益,維護(hù)金融系統(tǒng)的穩(wěn)定與發(fā)展,商業(yè)銀行的大數(shù)據(jù)戰(zhàn)略還需要不斷地接受市場(chǎng)監(jiān)管的檢驗(yàn)。

參考文獻(xiàn):

[3]黃昶君,王林.大數(shù)據(jù)助推銀行零售業(yè)務(wù)量化經(jīng)營(yíng)――大數(shù)據(jù)時(shí)代的零售數(shù)據(jù)挖掘和利用探索[J].海南金融,2014,(1):66-69.

第9篇:大數(shù)據(jù)分析戰(zhàn)略范文

近5年來(lái),IBM一直將“了解如何從數(shù)據(jù)中創(chuàng)造價(jià)值”作為分析研究的重點(diǎn),并在該領(lǐng)域不斷研究報(bào)告,從2009年開(kāi)始IBM將分析技術(shù)定義為戰(zhàn)略資產(chǎn),到2012年闡述大數(shù)據(jù)基本原理,再到2014年調(diào)研白皮書(shū)《分析:價(jià)值的藍(lán)圖》,IBM一直向外界展示在大數(shù)據(jù)領(lǐng)域的突破性成果。IBM大中華區(qū)大數(shù)據(jù)和分析及新市場(chǎng)總經(jīng)理、全球企業(yè)咨詢服務(wù)部合伙人、副總裁Jason Kelley說(shuō):“經(jīng)過(guò)過(guò)去幾年的認(rèn)知和探索階段,企業(yè)已經(jīng)逐步明確數(shù)據(jù)作為二十一世紀(jì)新自然資源的巨大價(jià)值?!?/p>

值得注意的是,2014新的調(diào)研報(bào)告,通過(guò)對(duì)全球70個(gè)國(guó)家各種規(guī)模組織的900位業(yè)務(wù)和IT主管進(jìn)行采訪,特別提出了“提升大數(shù)據(jù)實(shí)踐成果的三大要素”:“戰(zhàn)略”、“技術(shù)”、“組織”。報(bào)告表明:分析實(shí)施戰(zhàn)略要有助于實(shí)現(xiàn)組織的業(yè)務(wù)目標(biāo);現(xiàn)有技術(shù)要支持分析戰(zhàn)略;不斷發(fā)展的企業(yè)文化要讓員工能夠利用技術(shù)采取行動(dòng),并與戰(zhàn)略保持一致。正確協(xié)調(diào)這三大關(guān)鍵要素,才能創(chuàng)造有形的價(jià)值。

九大杠桿深挖數(shù)據(jù)價(jià)值

基于此次調(diào)研報(bào)告中的提出的三大要素,企業(yè)還需在九方面提升自身的能力。IBM全球企業(yè)咨詢服務(wù)部戰(zhàn)略與分析服務(wù)副合伙人段仰圣認(rèn)為,這也是領(lǐng)先企業(yè)區(qū)別于一般企業(yè)的衡量標(biāo)準(zhǔn)。九大杠桿為:

文化:一個(gè)組織內(nèi)的數(shù)據(jù)與業(yè)務(wù)分析技術(shù)的可用性和實(shí)際應(yīng)用;

數(shù)據(jù):數(shù)據(jù)治理流程的結(jié)構(gòu)和形成,及數(shù)據(jù)的安全性;

專業(yè)機(jī)能:數(shù)據(jù)管理、分析技能和能力的培養(yǎng)與運(yùn)用;

融資:為開(kāi)展分析工作而提供資金的財(cái)務(wù)寬松度;

評(píng)估:評(píng)估對(duì)業(yè)務(wù)成效的影響;

平臺(tái):硬件和軟件的整合能力;

價(jià)值來(lái)源:產(chǎn)生結(jié)果的行動(dòng)和決策;

高層支持:高管的支持和參與;

信任:組織內(nèi)的信任。

Waston成大數(shù)據(jù)平臺(tái)亮點(diǎn)

此次會(huì)IBM正式對(duì)外宣布,全面升級(jí)更新大數(shù)據(jù)和分析平臺(tái),即Watson Foundation,也就是將認(rèn)知計(jì)算能力全面融入到大數(shù)據(jù)分析平臺(tái)之上,通過(guò)輔助、理解、決策、洞察與發(fā)現(xiàn),幫助企業(yè)更快發(fā)現(xiàn)新問(wèn)題、新機(jī)遇和新價(jià)值,實(shí)現(xiàn)以客戶為中心的智慧轉(zhuǎn)型。

以花旗銀行為例,目前其通過(guò)Watson開(kāi)展零售銀行業(yè)務(wù)部的工作,零售銀行家和信貸員可以利用Waston獲取銀行客戶信息并且分析客戶下一步需求,同時(shí)處理金融、經(jīng)濟(jì)和用戶數(shù)據(jù)以及實(shí)現(xiàn)數(shù)字銀行的個(gè)性化。Watson能在3秒內(nèi)讀出和理解2億頁(yè)數(shù)據(jù),幫花旗銀行找出行業(yè)專家可能忽略的風(fēng)險(xiǎn)及收益。