公務員期刊網(wǎng) 論文中心 正文

大數(shù)據(jù)與AI技術(shù)實現(xiàn)保險精準定價研究

前言:想要寫出一篇引人入勝的文章?我們特意為您整理了大數(shù)據(jù)與AI技術(shù)實現(xiàn)保險精準定價研究范文,希望能給你帶來靈感和參考,敬請閱讀。

大數(shù)據(jù)與AI技術(shù)實現(xiàn)保險精準定價研究

摘要:介紹了保險行業(yè)的大數(shù)據(jù)特征,對利用大數(shù)據(jù)與ai技術(shù)相結(jié)合實現(xiàn)對車險、航延險、健康險、家財險四類保險精準定價進行了研究,以期對保險行業(yè)在精準定價方面拋磚引玉,解決保險行業(yè)保險定價不準的問題,保證保險公司在正常收入的前提下最大化消費者利益,以進一步促進保險業(yè)的發(fā)展。

關(guān)鍵詞:大數(shù)據(jù);AI;保險;保險定價

隨著社會的不斷發(fā)展,風險意識已經(jīng)深入人心,保險成了保障人民生活的必需品。據(jù)中國銀行保險監(jiān)督管理委員會的數(shù)據(jù)顯示,僅2020年3月份,全國財產(chǎn)險保費收入2962億元,壽險保費收入10798億元,意外險保費收入295億元,健康險保費收入2641億元,合計16695億元?,F(xiàn)有保險控股公司10家、財產(chǎn)保險公司60家、人壽保險公司71家、再保險公司8家、資產(chǎn)管理公司11家,全國做過保險人的人員數(shù)量超5000萬。面對如此龐大的市場規(guī)模及行業(yè)競爭,誰將是保險行業(yè)的下一個“獨角獸”,保費的精準化定價將是市場競爭核心價值的體現(xiàn)。保險定價在保險行業(yè)中是一個相當復雜而重要的過程,傳統(tǒng)中保險價格都是由“成本加成”的方法確定的,即對風險溢價的精算評估,包含直接成本、間接成本以及利潤增值。但此定價方式的弊端也尤為明顯:①定價周期過長,投入人力成本很高;②定價方式不夠靈活,對于所有客戶實行統(tǒng)一定價;③風險識別能力低,致使賠付率升高。無論定價是過高還是過低,其最終結(jié)果都是一樣的:影響保險公司收入,導致利潤下降甚至虧損。如何實現(xiàn)保險的精準定價,既能以較低的價格吸引優(yōu)質(zhì)客戶投保,又能針對風險較高的保單給出合理的價格,來降低承保風險和賠付率。通過大數(shù)據(jù)結(jié)合AI智能算法,將有效的解決保費的精準化定價問題,并將保險行業(yè)帶入新風口“大數(shù)據(jù)+”模式,以實現(xiàn)消費者以及保險公司兩者之間在利益均衡的前提下雙方利益最大化。

1保險行業(yè)的大數(shù)據(jù)特征

大數(shù)據(jù)(bigdata),就是具備4V(Volume,Vari-ty,Velocity,Value)特征的數(shù)據(jù)。

1.1規(guī)模性

(Volume)2020年3月,中國銀行保險監(jiān)督管理委員會的數(shù)據(jù)就能展現(xiàn)保險行業(yè)在交易額、交易單量、保險公司數(shù)量、參與人數(shù)等多個維度的規(guī)模性均達到要求數(shù)據(jù)量級。1.2多樣性(Varity)在保險行業(yè)開展業(yè)務過程中,會錄入數(shù)據(jù)庫相關(guān)的業(yè)務數(shù)據(jù),如客戶的基本資料,除此之外還會產(chǎn)生附加數(shù)據(jù),如電話銷售的錄音、定損時的照片或者視頻等多種形式的數(shù)據(jù),符合多樣性的要求。

1.3高速性

(Velocity)通過壽險公司數(shù)據(jù)取樣,電銷銷售如果有3萬,每天要打8h電話,按照3min~5min產(chǎn)生1M音頻文件算,每秒鐘大約300M的音頻,一天就是24T,完全符合高速性的要求。1.4價值性(Value)保險公司具有大量客戶的真實信息:如身份證、家庭住址、家庭成員、收入情況、就業(yè)情況、出險情況、存款情況等,均具有很高的數(shù)據(jù)價值性,當然在挖掘數(shù)據(jù)價值的同時要兼顧道德底線。根據(jù)大數(shù)據(jù)特征,對照保險行業(yè)的數(shù)據(jù),可看出保險行業(yè)具有大數(shù)據(jù)的相關(guān)特征。利用大數(shù)據(jù)技術(shù)解決保險行業(yè)相關(guān)問題是可行的,并將有利于促進保險業(yè)的發(fā)展。

2借力新技術(shù)實現(xiàn)保險精準定價

當獲取到大量數(shù)據(jù)后,如何快速、準確的分析數(shù)據(jù)、得出結(jié)論?這需要將大數(shù)據(jù)技術(shù)與AI智能算法相結(jié)合,兩種技術(shù)共同解決保費的精準化定價問題。下面將分別就車險、航延險、健康險、家財險的實際業(yè)務模式,闡述如何結(jié)合大數(shù)據(jù)及AI技術(shù)實現(xiàn)保費的精準化定價。

2.1車險采用

UBI車險模式,是一種基于駕駛行為來制定保費的車險。可通過車聯(lián)網(wǎng)、智能手機和OBD(汽車故障診斷的檢測系統(tǒng))、行車記錄儀等聯(lián)網(wǎng)設備綜合記錄車主的駕駛習慣、駕駛時間、行駛地點、實時速度、急加速、急減速、急轉(zhuǎn)彎、車輛信息、居住地區(qū)、違章、出險等信息。將上述數(shù)據(jù)標準化后,歸結(jié)為計值類變量、平均值類變量、標準差類變量、極值類變量與比例類變量,采用Logistic回歸對數(shù)據(jù)進行建模分析,通過極大似然估計對參數(shù)進行求解,之后對參數(shù)顯著性進行檢驗。模型通過檢驗后,結(jié)合AI智能算法,不斷地提高模型的顯著性,最終建立駕駛行為評分模型和UBI車輛定價模型,應用于車險保費的精準定價中,鼓勵車主建立良好的駕駛習慣以獲得更實惠的報價。以大數(shù)據(jù)作為數(shù)據(jù)支撐,使用AI機器人與真人相互配合,在前期審核、報價、自主批改等流程可以快速作出響應,據(jù)眾安保險測算,在大數(shù)據(jù)與AI的結(jié)合下,從報價到投保的整體轉(zhuǎn)化率由14%提升至20%。保險公司可以主動選擇低風險駕駛者,降低理賠賠付率并主動預防理賠事故的發(fā)生,另外,提供差異化的產(chǎn)品與服務有助于保險公司打造特色服務,獲取增值收益。UBI車險系統(tǒng)生態(tài)圈,如圖1所示。

2.2航延險

是屬于一種非物質(zhì)損失的風險投保,當航班沒有按照原定計劃執(zhí)行時,投保人可根據(jù)保險合同的規(guī)定,向保險公司發(fā)起索賠的商業(yè)保險行為。由于該險種是由時間延遲而導致的經(jīng)濟損失,無法以具體的實物損失進行估計,因此航延險的保險定價也成了一個難題。2011年~2016年我國保險公司航延險的保費收入增長近46倍,航延險又成了各保險公司的必爭之地?!笆袌龊艽?,定價很難”如何破解這一困境?可以通過大數(shù)據(jù)及AI技術(shù),有效地解決這一難題。在海量的歷史航班數(shù)據(jù)中,通過非線性特征、時間序列特征、非線性回歸、模式識別,并結(jié)合AI的深度學習能力,提取影響航班延誤的有效因素,建立多維度的航班延誤預測模型。通過保險公司體制內(nèi)的大量數(shù)據(jù),結(jié)合AI技術(shù),形成投保人的用戶畫像。通過航班延誤預測模型和用戶畫像,建立精準的航延險定價模型,來有效地解決非物質(zhì)損失險種航延險的定價難題。

2.3健康險

生活環(huán)境的惡化、老齡化加速、生活質(zhì)量的提升和消費觀念轉(zhuǎn)變的因素影響,國人對于健康也日趨重視,健康險的投保人數(shù)也逐年增加。如何做到準確合理的保費定價?可通過人們的穿戴設備獲取投保人的歷史心跳、心率、血壓、睡眠、運動、久坐、身高、體重、經(jīng)常出沒地區(qū)及周邊空氣質(zhì)量,通過醫(yī)療機構(gòu)獲取投保人的身體健康報告、治療情況及遺傳病史,然后基于龐大的用戶數(shù)據(jù),參考類似用戶畫像的群體,再利用大數(shù)據(jù)及AI技術(shù),建立健康評測模型,形成投保人健康檔案,并結(jié)合實時數(shù)據(jù),準確計算出健康險的保費價格。既能貼合投保人的心理價位,又能有效地降低理賠賠付率及保險公司運營成本。

2.4家財險

隨著互聯(lián)網(wǎng)技術(shù)的高速發(fā)展,萬物互聯(lián)已經(jīng)深入各行各業(yè),尤其在居家環(huán)境中更尤為突出。通過房屋中的智能設備,獲取用電情況、用水情況、用燃氣情況、電器使用年限、屋內(nèi)空氣質(zhì)量、設備巡檢記錄,通過互聯(lián)網(wǎng)獲取小區(qū)所在地的歷年天氣記錄、天氣預報、治安、物業(yè)等數(shù)據(jù)。結(jié)合大數(shù)據(jù)及AI技術(shù),建立房屋安全測評模型,并生成相應的房屋檔案,一房一檔,準確評估承保風險,精確計算保險保費,錄入房屋坐落地址后,就能夠迅速地提供出相對應的保費價格。房屋中的智能設備,可以做到“事前評估算保費,事中預防范風險,事后追溯留證據(jù)”,保證投保人及保險公司的合法利益。在商業(yè)險中,中小型保險公司市場利潤空間往往較小,但是擁有巨大的增長潛力。據(jù)IBM商業(yè)價值研究院的數(shù)據(jù)顯示:市場規(guī)模預計將從2018年的59億美元增長到2023年的98億美元,通過大數(shù)據(jù)與AI技術(shù)得出的保費定價模型,可為這些細分市場帶來10%的額外收入,精準定價最多可減少5%的銷售成本。因此中小型保險公司能夠更輕松地進入這些客戶細分市場,使保險公司在細分市場中實現(xiàn)顯著的經(jīng)濟效益。大數(shù)據(jù)與AI技術(shù)的融合,實現(xiàn)了實時準確的保費定價,能夠精準地識別優(yōu)質(zhì)客戶,避免客戶流失;縮短保險定價周期,提升品牌競爭力;減少人工投入,降低運營成本;風險識別,降低保險賠付率;通過結(jié)合當時當?shù)氐慕?jīng)濟形式及政策環(huán)境,動態(tài)的調(diào)整定價模型,以適應相關(guān)監(jiān)管要求,進一步降低公司運營維護成本。

3結(jié)束語

大數(shù)據(jù)和AI技術(shù),之所以能夠快速準確的實現(xiàn)保費定價,主要原因有:①以龐大的數(shù)據(jù)規(guī)模作為支撐,進行數(shù)據(jù)挖掘分析;②尋找顯著的定價模型,并通過AI的深度學習及強化學習的能力,得到更強大的預測模型,可以產(chǎn)生良好的預測結(jié)果,提供了更快的學習機制,并且更適應環(huán)境的變化。通過利用大數(shù)據(jù)、AI等高新技術(shù),保險人一直致力于在保險行業(yè)業(yè)務數(shù)據(jù)的基礎(chǔ)上,研究如何將數(shù)據(jù)轉(zhuǎn)化為服務,讓數(shù)據(jù)為承保的公司服務,為投保的客戶服務,同時為整個保險行業(yè)以及為全社會服務。

[參考文獻]

[1]王彤,黃明明.發(fā)揮優(yōu)勢補足短板—河南太平洋產(chǎn)險以創(chuàng)新助農(nóng)業(yè)高質(zhì)量發(fā)展[N].中國銀行保險報,2020-06-24.

[2]曹策.我國互聯(lián)網(wǎng)保險產(chǎn)品的發(fā)展研究[J].現(xiàn)代商業(yè),2020,(17):123~125.

[3]龔夢雪.數(shù)字時代保險產(chǎn)品服務營銷策略研究[J].中國市場,2020,(17):128~132.

[4]潘秋君,李文如,劉曉華.保險科技如何推動保險業(yè)的轉(zhuǎn)型升級和質(zhì)量變革[J].中外企業(yè)家,2020,(17):75.

[5]何倩.探討新時期大數(shù)據(jù)分析在醫(yī)院醫(yī)保管理中的具體運用[J].中國衛(wèi)生標準管理,2020,11(11):1~3.

[6]陳祺琦.大數(shù)據(jù)分析在保險行業(yè)中的應用[J].電子世界,2020,(10):36~38.

[7]蔣才芳.人壽保險行業(yè)市場結(jié)構(gòu)與效率研究[D].長沙:湖南大學,2015.

作者:郭建 單位:對外經(jīng)濟貿(mào)易大學