公務(wù)員期刊網(wǎng) 精選范文 高等數(shù)學(xué)范文

高等數(shù)學(xué)精選(九篇)

前言:一篇好文章的誕生,需要你不斷地搜集資料、整理思路,本站小編為你收集了豐富的高等數(shù)學(xué)主題范文,僅供參考,歡迎閱讀并收藏。

高等數(shù)學(xué)

第1篇:高等數(shù)學(xué)范文

關(guān)鍵詞:軟件;數(shù)學(xué)實驗;高等數(shù)學(xué);高職院校

中圖分類號:O13-4 文獻(xiàn)標(biāo)識碼:A 文章編號:1007-9599 (2012) 13-0000-01

一、高等數(shù)學(xué)的目標(biāo)與現(xiàn)狀

高職高專教育培養(yǎng)的是高端技能型人才,故高等數(shù)學(xué)課程必須以“提高學(xué)生素質(zhì),服務(wù)專業(yè)學(xué)習(xí)”為指導(dǎo)思想,使學(xué)生在初等數(shù)學(xué)的基礎(chǔ)上,擴(kuò)展性的獲得微積分的必備基礎(chǔ)知識與技能,培養(yǎng)學(xué)生用數(shù)學(xué)方法研究實際問題的習(xí)慣,把簡單實際問題化為數(shù)學(xué)問題進(jìn)而求解的能力。但是,高等數(shù)學(xué)本身的內(nèi)容比較抽象,許多高職學(xué)生學(xué)習(xí)高等數(shù)學(xué)的興趣不大,高等數(shù)學(xué)理論與實際聯(lián)系不夠緊密等。

二、高等數(shù)學(xué)的有益補(bǔ)充“數(shù)學(xué)實驗”

為了解決以上的問題,我們引入“數(shù)學(xué)實驗”作為高職高等數(shù)學(xué)教學(xué)的有益補(bǔ)充。

選擇科學(xué)計算軟件Mathematica作為高等數(shù)學(xué)“數(shù)學(xué)實驗”的工具,她很好地結(jié)合了數(shù)值和符號計算引擎、圖形系統(tǒng)、編程語言、文本系統(tǒng)、和與其他應(yīng)用程序的高級連接。

高職高等數(shù)學(xué)教學(xué)除了可以用通俗易懂的語言向?qū)W生介紹其最基礎(chǔ)的知識外,可以加入相關(guān)的“數(shù)學(xué)實驗”,這樣做的顯著特點是:

(一)在課程中增加了計算機(jī)實踐環(huán)節(jié),學(xué)生在高等數(shù)學(xué)學(xué)習(xí)中結(jié)合使用Mathematica,通過 “演示與實踐”來理解數(shù)學(xué)中的一些抽象概念和理論,并且應(yīng)用計算機(jī)操作來解決許多以前不能解決的實際問題。

(二)Mathematica具有強(qiáng)大的畫圖功能,只需簡單的幾個命令可以畫出二維、三維的函數(shù)圖像,甚至可以做可控動畫。

然后同時按兩個鍵:

得出結(jié)果:

有了函數(shù)的圖像,對于教師的教和學(xué)生的學(xué)都有很大的幫助:教師不用空口說白話,可以有的放矢,可以通過可視的內(nèi)容進(jìn)行歸納總結(jié),幫助學(xué)生得到相關(guān)的概念、性質(zhì)、定理等;而學(xué)生更喜歡這樣的教學(xué)方式,首先,如果圖像是自己畫出來的,本身具有一定的成就感,而且對于函數(shù)的印象會比較深刻,通過教師的引導(dǎo)得到相關(guān)的概念、性質(zhì)、定理等,也能記得牢;其次,對于感性的內(nèi)容,學(xué)生比較感興趣,也容易懂。

(三)Mathematica數(shù)學(xué)軟件具有強(qiáng)大的符號計算功能,對于高職學(xué)生來說,可以適當(dāng)?shù)臏p弱計算的要求,把主要精力花到掌握解題方法,這樣學(xué)生擺脫了繁瑣的計算,自然就不會對高等數(shù)學(xué)產(chǎn)生逆反心理,而且學(xué)生相對有時間來思考,解決問題。

例2:求函數(shù) 的極值.

然后同時按兩個鍵:

得出結(jié)果:

觀察它的兩個極值. 再輸入

用二階導(dǎo)數(shù)判定極值, 輸入

整個過程,學(xué)生只要把求函數(shù)極值的一般步驟記牢即可。

(四)Mathematica具有強(qiáng)大的編程等其他功能,對于學(xué)生的后續(xù)發(fā)展有很大的幫助。Mathematica廣泛的應(yīng)用于其他領(lǐng)域:物理學(xué)、工程學(xué)、經(jīng)濟(jì)學(xué)、社會學(xué)、生物學(xué)等,這些對于學(xué)生在自己學(xué)習(xí)的相關(guān)專業(yè)上也是有好處的。當(dāng)然,這部分內(nèi)容只能留給學(xué)有余力的學(xué)生來學(xué)習(xí)。

三、結(jié)束語

鑒于高等數(shù)學(xué)對于高職學(xué)生來說比較難學(xué),本身內(nèi)容多,課時少的大環(huán)境下,隨著學(xué)生計算機(jī)的普及,有必要引入數(shù)學(xué)軟件包Mathematica作為高等數(shù)學(xué)教學(xué)的有益補(bǔ)充,另外教師必須精心設(shè)計每一個實驗,保證可以得到較佳的效果。

參考文獻(xiàn):

[1]王積建,劉維先,龔洪勝.數(shù)學(xué)實驗與高等數(shù)學(xué)交替教學(xué)的實驗研究:浙江工貿(mào)職業(yè)技術(shù)學(xué)院學(xué)報,2007,3

第2篇:高等數(shù)學(xué)范文

關(guān)鍵詞:初等數(shù)學(xué);高等數(shù)學(xué);聯(lián)系;應(yīng)用

數(shù)學(xué)是一門科學(xué)性、概括性、邏輯性很強(qiáng)的學(xué)科。它源自于古希臘,是研究數(shù)量、結(jié)構(gòu)、變化以及空間模型等概念。透過抽象化和邏輯推理的使用,由計數(shù)、計算、量度和對物體形狀及運(yùn)動的觀察中產(chǎn)生。數(shù)學(xué)的基本要素是:邏輯和直觀、分析和推理、共性和個性。

問題的提出

許多學(xué)生經(jīng)常提出這樣的問題:我們?yōu)槭裁匆獙W(xué)這么多高等數(shù)學(xué)?這些問題長期以來困擾著我們。本文通過討論初等與高等數(shù)學(xué)的聯(lián)系,使他們真正覺得高等數(shù)學(xué)對初等數(shù)學(xué)教學(xué)有向?qū)砸饬x,幫助他們用高等數(shù)學(xué)知識去分析和理解初等數(shù)學(xué)教材,從而站得更高,對中學(xué)數(shù)學(xué)的來龍去脈看得更清楚。

一、初等數(shù)學(xué)

初等數(shù)學(xué)時期從公元前五世紀(jì)到公元十七世紀(jì),延續(xù)了兩千多年、由于高等數(shù)學(xué)的建立而結(jié)束。這個時期最明顯的結(jié)果就是系統(tǒng)地創(chuàng)立了初等數(shù)學(xué),也就是現(xiàn)在中小學(xué)課程中的算術(shù)、初等代數(shù)、初等幾何(平面幾何和立體幾何)和平面三角等內(nèi)容。

二、高等數(shù)學(xué)

內(nèi)容包括函數(shù)與極限、一元函數(shù)微積分、向量代數(shù)與空間解析幾何、多元函數(shù)微積分、級數(shù)、常微分方程等。其中極限論是基礎(chǔ):微分、積分是是核心,是從連續(xù)的側(cè)面揭示和研究函數(shù)變化的規(guī)律性,微分是從微觀上揭示函數(shù)的局部性質(zhì),積分是從宏觀上揭示函數(shù)的整體性質(zhì):級數(shù)理論是研究解析函數(shù)的主要手段:解析幾何為微積分的研究提供了解析工具,為揭示函數(shù)的性質(zhì)提供了直觀模型:微分方程又從方程的角度把函數(shù)、微分、積分猶記得聯(lián)系起來,揭示了它們之間內(nèi)在的依賴轉(zhuǎn)化關(guān)系。

三、高等數(shù)學(xué)與初等數(shù)學(xué)的聯(lián)系

高等數(shù)學(xué)分支之一數(shù)學(xué)分析的形成和發(fā)展體現(xiàn)了數(shù)學(xué)發(fā)展的每個新時期,思想方法上發(fā)生了根本性變化。它的形成是深深扎根于初等數(shù)學(xué)基礎(chǔ)之上,它的一些基本概念如導(dǎo)數(shù)、積分、無窮級數(shù)的收斂等,都是在初等數(shù)學(xué)有關(guān)問題的基礎(chǔ)上發(fā)展起來的。如導(dǎo)數(shù)是在運(yùn)用代數(shù)運(yùn)算求直線斜率這一問題的基礎(chǔ)上,發(fā)展成為運(yùn)用極限方法求曲線上的點的斜率而形成的。可以這樣講,數(shù)學(xué)分析的形成是初等數(shù)學(xué)發(fā)展到一定階段的必然結(jié)果。

中學(xué)數(shù)學(xué)思想和方法主要體現(xiàn)為以下幾個方面,第一是指具體解題方法和解題模式,如代數(shù)中的加減消元法、錯位相減法、判別式法、公式法、數(shù)學(xué)歸納法、韋達(dá)法等等:幾何中的對稱、旋轉(zhuǎn)、平移、相似等等。第二是指數(shù)學(xué)觀念,即人們對數(shù)學(xué)的基本看法概括認(rèn)識,如推理意識、整體意識、抽象意識、化歸意識、數(shù)學(xué)美的意識等等。第三是指“通用法”。數(shù)形結(jié)合法、待定系數(shù)法、換元法、分離系數(shù)法、消元法等等?,F(xiàn)代中學(xué)數(shù)學(xué)和高等數(shù)學(xué)教學(xué)的一個顯著特征就是注重知識形成過程的教學(xué)形成和發(fā)展學(xué)生的教學(xué)思想和方法,會用數(shù)學(xué)思想和方法來解決問題。

綜上所述可知,高等代數(shù)在知識上的確是中學(xué)數(shù)學(xué)的繼續(xù)和提高。它還引入了數(shù)域、數(shù)環(huán)、向量空間等代數(shù)系統(tǒng)。這對用現(xiàn)代數(shù)學(xué)的觀點、原理和方法指導(dǎo)中學(xué)數(shù)學(xué)教學(xué)足十分有用的。

四、高等數(shù)學(xué)在初等數(shù)學(xué)題中的應(yīng)用

1.不等式證明

(1)概率論的應(yīng)用

例1.若0<a<1,0<b<1,試證:0≤a+b-ab≤1。

證明:令A(yù),B是兩個相互獨立的事件,且使PA=a,PB=b

由PA∪B=PA+PB-PAB

=PA+PB-PAPB

=a+b-ab

由概率的性質(zhì)知,0≤PA∪B≤1,從而0≤a+b-ab≤1。

(2)微積分方法的應(yīng)用

例2.證明:若函數(shù)f(x)在0,1單調(diào)減少,則∫10f(x)dx-1n∑nk=1f(kn)≤f(0)-f(1)n

證明:已知f(x)在0,1單調(diào)減少,則f(x)在0,1可積.將0,1n等分,分點是:0,1n,2n,...,n-1n,1.有

∫10f(x)dx-1n∑nk=1f(kn)=∑nk=1∫knk-1nf(x)dx-∑nk=1∫knk-1nf(kn)dx

=∑nk=1∫knk-1n[f(x)-f(kn)]dx

≤∑nk=1∫knk-1n[f(k-1n)-f(kn)]dx

=1n∑nk=1[f(k-1n)-f(kn)]

=1n[f(0)-f(1n)+f(1n)]-f(2n)+...+f(n-1n)-f(1)

=f(0)-f(1)n

這是03年北京高考理科數(shù)學(xué)最后一道大題(第20題),是有關(guān)抽象函數(shù)不等式的證明題,認(rèn)真分析研究該題中的(2),發(fā)現(xiàn)這是一道具有高等數(shù)學(xué)知識背景的試題,可以將這個問題推廣:

推廣函數(shù)fx定義在a,b上。fa=fb,且對任意的x1,x2∈a,b,都有fx1-fx2≤x1-x2,則必有fx1-fx2≤b-a2

證明:(i)當(dāng)x1-x2≤b-a2時,由fx1-fx2≤x1-x2≤b-a2知,結(jié)論成立。

(ii)當(dāng)x1-x2>b-a2時,不妨設(shè)x1<x2,則x1-x2<-b-a2,從而有

fx1-fx2=fx1-fa+fb-fx2

≤fx1-fa+fb-fx2

≤x1-a+b-x2

=x1-a+b-x2

=b-a+x1-x2

<b-a-b-a2

=b-a2.

綜合可知,總有fx1-fx2≤b-a2。

2.矩陣的應(yīng)用(向量組的線性相關(guān)性)

要在問題中用上矩陣也必須構(gòu)造出與問題有某種關(guān)系的矩陣,然后才能使用矩陣的性質(zhì)和定理。

例2.設(shè)α=(9,12,15),β1=(1,2,3),β2=(4,5,6),試問α是否可由β1,β2線性表示?

解:假定有α=k1β1+k2β2,即有

(9,12,15)=k1(1,2,3)+k2(4,5,6)=(k1+4k2,2k1+5k2,3k1+6k2),則k1,k2適合線性方程組

k1+4k2=9

2k1+5k2=12

3k1+6k2=15

容易解得k1=1,k2=2,從而α=β1+2β2,即α可由β1,β2線性表示.

在此例中引入矩陣作為工具使用了矩陣的性質(zhì),得以求出通項。而用初等數(shù)學(xué)的方法解的話,則要經(jīng)過復(fù)雜的迭代才能解出此題,不如用矩陣的知識解題一目了然。

結(jié)論

本文通過分析初等數(shù)學(xué)與高等數(shù)學(xué)的聯(lián)系、融合總結(jié)了高等數(shù)學(xué)在初等數(shù)學(xué)中的應(yīng)用并發(fā)揮高等數(shù)學(xué)在中學(xué)數(shù)學(xué)教學(xué)的指導(dǎo)作用,幫助加強(qiáng)對初等數(shù)學(xué)的認(rèn)識,幫助他們正確運(yùn)用所學(xué)的理論和方法,使他們更好地從整體上更科學(xué)更系統(tǒng)地認(rèn)識初等數(shù)學(xué)的結(jié)構(gòu)。在高等數(shù)學(xué)教育中如果有意識地培養(yǎng)學(xué)生運(yùn)用高等數(shù)學(xué)方法分析研究初等數(shù)學(xué)中的問題,可以調(diào)動學(xué)生學(xué)習(xí)的積極性,可以開闊學(xué)生視野,提高解決問題能力。

指導(dǎo)教師:尹哲

參考文獻(xiàn):

[1]數(shù)學(xué)教育學(xué)張奠宙,唐瑞芬,劉鴻坤著[M].江西:江西教育出版社1991

[2]金茂明.高等數(shù)學(xué)在解中學(xué)數(shù)學(xué)題中的應(yīng)用[J].涪陵師專學(xué)報,1999,15(3):61~64

[3]祥?高等幾何?高等教育出版社

[4]劉玉鏈,傅沛仁編?數(shù)學(xué)分析講義?高等教育出版社

第3篇:高等數(shù)學(xué)范文

隨著我國的改革開放以及全球經(jīng)濟(jì)的一體化,越來越多的外國學(xué)生選擇到中國接受高等教育。高等數(shù)學(xué)作為一門重要基礎(chǔ)課程,不可避免地成為理工類專業(yè)留學(xué)生的必修課。留學(xué)生群體中,來自港澳臺等地區(qū)的僑生是其中很特殊的一部分。一方面,僑生在生活習(xí)慣、語言交流、文化傳統(tǒng)上與中國大陸基本一致;另一方面,由于各種原因,僑生來校前的數(shù)學(xué)課程受教育程度參差不齊。這使得僑生的高等數(shù)學(xué)教學(xué)面臨著一種特殊的現(xiàn)狀。不少學(xué)者對我國高等數(shù)學(xué)教學(xué)已做了深入的研究[1,2,3]。本文結(jié)合作者在華僑大學(xué)的授課經(jīng)歷,分析當(dāng)前僑生高等數(shù)學(xué)教學(xué)面臨的主要問題和原因,進(jìn)而提出若干針對性的教學(xué)策略,以期提高僑生高等數(shù)學(xué)的教學(xué)成效。

一、僑生高等數(shù)學(xué)教學(xué)的現(xiàn)狀及分析

華僑大學(xué)現(xiàn)有廈門、泉州兩個校區(qū),我們以廈門校區(qū)為例來了解下高等數(shù)學(xué)教學(xué)的現(xiàn)狀。

學(xué)校專門成立了境外生班級,將僑生與大陸生進(jìn)行區(qū)別教學(xué),這也使得僑生教學(xué)中的問題得到了集中的體現(xiàn)。

1.語言習(xí)慣不盡相同。僑生大多來自港澳臺地區(qū)以及一些東南亞國家。僑生的不同背景,使得師生交流、教與學(xué)過程中遇到許多障礙,這在高等數(shù)學(xué)教學(xué)中體現(xiàn)得尤為明顯。港澳地區(qū)的僑生,習(xí)慣使用粵語、繁體字表達(dá),普通話水平低。也有少數(shù)學(xué)生甚至無法用中文流利表達(dá)。中學(xué)教材的差異也使得他們對數(shù)學(xué)符號、數(shù)學(xué)公式有不同的表述。此外,對于教材中的中文專業(yè)詞匯,經(jīng)常需要借助英語解釋才能準(zhǔn)確理解。

2.基礎(chǔ)參差不齊。眾所周知,要學(xué)好高等數(shù)學(xué),數(shù)學(xué)基礎(chǔ)必不可少,例如:簡單的集合論、直角坐標(biāo)系理論、解析幾何和函數(shù)的基本知識、三角函數(shù)基本知識等等[4]。令人遺憾的是,由于各個地區(qū)的教育水平的差異,使得僑生們所具備的數(shù)學(xué)基礎(chǔ)千差萬別。例如,有的學(xué)生不明白數(shù)學(xué)符號?坌和?堝的含義;有的學(xué)生無法理解區(qū)間(a,b)代表什么樣的集合;甚至有的學(xué)生無法對一個等式進(jìn)行移項運(yùn)算,等等。目前,對于僑生,華僑大學(xué)采用的是本科少學(xué)時類型的高等數(shù)學(xué)教材。從作者的教學(xué)經(jīng)歷來看,該教材對僑生是基本適用的,不過需要任課教師劃定適合的范圍并且控制難度。因此,目前亟須適合僑生的高等數(shù)學(xué)教材。

3.學(xué)習(xí)興趣缺失。大多數(shù)同學(xué)認(rèn)為高等數(shù)學(xué)抽象難懂,他們對高等數(shù)學(xué)缺乏興趣甚至產(chǎn)生厭倦。究其原因,一是高等數(shù)學(xué)的課程內(nèi)容抽象、邏輯性強(qiáng),學(xué)生需花費大量精力才有收獲,不容易取得成就感;二是教學(xué)內(nèi)容多以理論推導(dǎo)和計算為主,學(xué)生更多是通過做題來提升認(rèn)知,學(xué)生對概念的理解是空洞的,甚至要靠死記硬背,學(xué)習(xí)經(jīng)常“走彎路”,費力反而難以進(jìn)步;三是學(xué)生的自學(xué)能力欠缺,因此常常被老師的課程進(jìn)度甩在后面,挫傷了學(xué)習(xí)積極性。作者在華僑大學(xué)講授僑生的高等數(shù)學(xué)中發(fā)現(xiàn),有些學(xué)生只是為了應(yīng)付考勤才愿意坐到課堂里來;對于作業(yè),不少同學(xué)只是簡單照抄他人的應(yīng)付了事;課堂上,有些同學(xué)不認(rèn)真聽講,而是忙于自己的事,像上課玩手機(jī)的學(xué)生更是不在少數(shù)。另一方面,有些教師教學(xué)方法單一,教學(xué)過程中只是側(cè)重于講授基本的理論體系,脫離了實際需要,忽視了能力和意識的培養(yǎng)。這樣的教學(xué)方式往往壓制了僑生學(xué)習(xí)的積極性。

4.學(xué)習(xí)時間無法保證。一方面,大一課程繁重,沒有太多自主學(xué)習(xí)的時間。例如,華僑大學(xué)計算機(jī)專業(yè)在大一上學(xué)期開設(shè)了諸如高等數(shù)學(xué)、英語、土木工程概論、工程化學(xué)等課程。這些課程共計8~9門,每周32~36學(xué)時。甚至像建筑專業(yè)的學(xué)生,經(jīng)常需要通宵達(dá)旦地制圖。可以想象在課程如此繁重的情形下,學(xué)生分配給學(xué)習(xí)高等數(shù)學(xué)的時間很可能是少之又少。另一方面,華僑大學(xué)僑生的課余活動是豐富多彩的,像境外生潑水節(jié)、美食節(jié)、“海上絲綢之路”文化交流活動等等。這些活動為僑生在華僑大學(xué)的生活學(xué)習(xí)增色不少。但不可否認(rèn)的是,豐富的課余活動也進(jìn)一步壓縮了僑生的學(xué)習(xí)時間。另外一個不容忽視的情形是,僑生普遍不能合理分配自己的空余時間,導(dǎo)致很多時間白白浪費。

二、僑生高等數(shù)學(xué)教學(xué)的策略

從上面討論可以看到,目前高等學(xué)校中僑生高等數(shù)學(xué)的教學(xué)現(xiàn)狀不容樂觀。下面作者根據(jù)自己的教學(xué)經(jīng)歷,提出若干教學(xué)措施,以期提高僑生高等數(shù)學(xué)的教學(xué)成效。

1.建立標(biāo)準(zhǔn)規(guī)范的教學(xué)語言。目前我們在僑生教學(xué)中采用的是普通話教學(xué)。這就要求任課老師掌握標(biāo)準(zhǔn)的普通話發(fā)音;在進(jìn)行理論講解、計算演示時,要求語言的表述突出重點、語速適中,同時要求板書字跡工整。遇到專業(yè)詞匯時,多用平實的語言進(jìn)行解釋說明。任課老師還應(yīng)該努力提升自身業(yè)務(wù)水平,以能夠熟練進(jìn)行英文教學(xué)要求自己。對于一些難以理解的專業(yè)詞匯,任課老師可輔以英文加以講解。此外,任課老師在做理論推導(dǎo)、計算演示時,要使用通用的數(shù)學(xué)符號、公式,保證上下文表述的連貫一致以及語言的簡潔優(yōu)美。同時,督促僑生用規(guī)范的格式完成作業(yè);通過批改他們的作業(yè),逐步規(guī)范僑生的數(shù)學(xué)語言。

2.建立一套適合僑生的高等數(shù)學(xué)教材。正如前面所述,目前亟須適合僑生教學(xué)的高等數(shù)學(xué)教材。根據(jù)僑生的不同情況,這樣的教材應(yīng)包括必要的預(yù)備知識,例如:集合的基本運(yùn)算、直角坐標(biāo)系中函數(shù)圖形的描繪、三角函數(shù)的基本知識等等。新教材還應(yīng)因材施教,側(cè)重微積分基礎(chǔ)概念和基本計算的介紹。同時新教材還應(yīng)增加圖例和應(yīng)用。如此以增加新教材的直觀性、實效性。目前,華僑大學(xué)正在組織力量進(jìn)行僑生高等數(shù)學(xué)新教材的編寫,相信這將會是僑生教學(xué)改革的有益嘗試。

3.提升高等數(shù)學(xué)課堂教學(xué)吸引力。我們從幾個方面來說明如何提高僑生對高等數(shù)學(xué)的學(xué)習(xí)興趣。(1)適當(dāng)穿插數(shù)學(xué)史內(nèi)容的介紹。在教學(xué)中,一些數(shù)學(xué)史的介紹,可以幫助展示重要數(shù)學(xué)理論的發(fā)展過程,拓寬學(xué)生們的視野,加深他們對所學(xué)知識的理解;幫助他們提高學(xué)習(xí)的積極性、激發(fā)他們的創(chuàng)造性;幫助學(xué)生建立嚴(yán)謹(jǐn)治學(xué)、刻苦鉆研的學(xué)習(xí)態(tài)度。例如,在向?qū)W生介紹圓周率π時,應(yīng)當(dāng)強(qiáng)調(diào)我國數(shù)學(xué)家對此做出的卓越貢獻(xiàn):劉徽在注釋《九章算術(shù)》時,用了所謂的割圓術(shù),求得π的近似值3.14。祖沖之進(jìn)一步算出了圓周率介于3.1415926和3.1415927的結(jié)果,這一精度在長達(dá)一千年的時間中,一直處于世界領(lǐng)先地位。通過圓周率數(shù)學(xué)史的介紹,可使僑生們明白我國在數(shù)學(xué)方面對世界文明的進(jìn)步起到的重大作用,能夠增加他們的民族自豪感,同時也為他們學(xué)習(xí)高等數(shù)學(xué)帶來巨大的動力。又例如:天才數(shù)學(xué)家歐拉31歲右眼失明,年近花甲雙目失明,但他仍以堅強(qiáng)的意志繼續(xù)數(shù)學(xué)研究,成為了歷史上最高產(chǎn)的數(shù)學(xué)家。通過向僑生們介紹這些故事,不僅有助于開闊學(xué)生的思維視野、幫助他們用歷史發(fā)展的眼光去理解數(shù)學(xué);同時也有助于他們從中獲取寶貴的人生哲理,讓他們從全新的角度賞析數(shù)學(xué),提高他們對數(shù)學(xué)的熱愛。(2)多媒體教學(xué)與傳統(tǒng)教學(xué)的相互結(jié)合。隨著計算機(jī)越來越多地應(yīng)用到教學(xué)中,其在課堂教學(xué)中優(yōu)越性日益體現(xiàn)。傳統(tǒng)的教學(xué)注重在黑板上逐步推導(dǎo)、演算,這有助于培養(yǎng)學(xué)生的抽象思維能力。而多媒體教學(xué)借助圖形、動畫,可以為學(xué)生們提供高等數(shù)學(xué)的“直觀畫面”。例如,在介紹導(dǎo)數(shù)時,通過動畫演示割線不斷靠近切線這一過程,給學(xué)生直觀地呈現(xiàn)“無限逼近”這一概念;在介紹積分時,通過動畫演示圓內(nèi)接正多邊形不斷接近圓的過程,進(jìn)而向?qū)W生們引申出定積分的思想。這樣,通過大量的圖例和動畫演示,可以幫助學(xué)生們直觀地理解高等數(shù)學(xué)的重要概念,提高他們的學(xué)習(xí)效率。因此,我們要實現(xiàn)傳統(tǒng)教學(xué)與多媒體教學(xué)的有機(jī)結(jié)合,充分發(fā)揮兩種教學(xué)手段的優(yōu)點。(3)營造學(xué)習(xí)氛圍,培養(yǎng)僑生自學(xué)能力。高等數(shù)學(xué)是一門循序漸進(jìn)的課程,學(xué)生不僅需要在課堂上認(rèn)真聽講,更應(yīng)該養(yǎng)成課前預(yù)習(xí)課后復(fù)習(xí)的良好習(xí)慣。這就要求我們營造良好的學(xué)習(xí)氛圍,同時培養(yǎng)學(xué)生的自學(xué)能力。對于僑生的高等數(shù)學(xué)教學(xué),任課老師應(yīng)該更多地承擔(dān)起責(zé)任來,給予他們更多的人文關(guān)懷。因為僑生不同于大陸生,他們在學(xué)習(xí)過程中更容易迷失目標(biāo),需要任課老師不斷地加以引導(dǎo)和鼓勵。愛因斯坦說過“興趣是最好的老師”。課堂的教學(xué),絕不僅僅是任課老師的“獨角戲”,我們應(yīng)當(dāng)讓僑生積極參與到課堂教學(xué)中來。課堂上,應(yīng)當(dāng)鼓勵僑生積極回答問題,對于他們獨特新穎的回答要多給予肯定和表揚(yáng);任課老師可以多準(zhǔn)備些題量難度適中的題目,定期組織學(xué)生進(jìn)行課堂測驗。課后,可以多組織以數(shù)學(xué)為主題的各類文化活動、趣味競賽等。目前,華僑大學(xué)每年都會組織大陸生的高等數(shù)學(xué)競賽,對成績優(yōu)異的學(xué)生給予表揚(yáng)和獎勵。作者認(rèn)為,也應(yīng)當(dāng)組織面向僑生的高等數(shù)學(xué)競賽。相信通過這些方式,能夠有助于營造良好的學(xué)習(xí)氛圍、促進(jìn)僑生自學(xué)能力的培養(yǎng)。

第4篇:高等數(shù)學(xué)范文

關(guān)鍵詞:高等數(shù)學(xué);教學(xué)改革;多媒體

社會經(jīng)濟(jì)的高速發(fā)展,使得數(shù)學(xué)的應(yīng)用越來越廣泛,因此,提高高等教育中的數(shù)學(xué)教學(xué)質(zhì)量,是十分有必要的。對于理工科的大學(xué)生而言,高等數(shù)學(xué)顯得尤為重要,但是,許多學(xué)生缺乏對高等數(shù)學(xué)學(xué)習(xí)重要性的認(rèn)識和了解,對高等數(shù)學(xué)的學(xué)習(xí)上不夠重視,不努力,有少數(shù)學(xué)生甚至認(rèn)為學(xué)習(xí)高等數(shù)學(xué)沒用,這樣不僅會影響到高等數(shù)學(xué)這一門課的學(xué)習(xí)質(zhì)量,也會影響到學(xué)生整個大學(xué)學(xué)習(xí)的質(zhì)量,所以,做為數(shù)學(xué)教師有責(zé)任有義務(wù)讓學(xué)生明白為什么要學(xué)好數(shù)學(xué)、如何才能學(xué)好數(shù)學(xué)等問題。本文僅就學(xué)生這一側(cè)面來談一些在高等數(shù)學(xué)學(xué)習(xí)中應(yīng)該注意的幾個方面。

一 重視第一堂課,讓學(xué)生從思想上認(rèn)識學(xué)習(xí)數(shù)學(xué)的重要性

第一堂課的內(nèi)容一定不能省,要精心安排,要讓學(xué)生知道為什么學(xué)習(xí)高等數(shù)學(xué),學(xué)習(xí)高等數(shù)學(xué)的重要性,應(yīng)當(dāng)學(xué)習(xí)什么,怎樣去學(xué)[1]。向?qū)W生介紹高等數(shù)學(xué)的內(nèi)容,闡述高等數(shù)學(xué)與中學(xué)數(shù)學(xué)的異同特點和學(xué)習(xí)高等數(shù)學(xué)的目的,并將本學(xué)期的教學(xué)計劃、教學(xué)內(nèi)容、教學(xué)方法、成績考核、評定方法告知學(xué)生,同時介紹一些好的學(xué)習(xí)方法和經(jīng)驗,使學(xué)生一開始就清楚高等數(shù)學(xué)和中學(xué)數(shù)學(xué)的內(nèi)在關(guān)系。激發(fā)學(xué)生學(xué)習(xí)的興趣。

高等數(shù)學(xué)是理工科大一學(xué)生的必須開設(shè)的課程,學(xué)生剛剛考入大學(xué),中學(xué)數(shù)學(xué)教學(xué)內(nèi)容相對較淺顯,理論性、應(yīng)用性不強(qiáng),而且課時較多,教學(xué)進(jìn)程相對較慢,教師對內(nèi)容進(jìn)行詳細(xì)講解、分析,對學(xué)生進(jìn)行提問,并通過課堂演練題目的形式邊講解、邊討論、邊練習(xí),加深學(xué)生的理解和記憶,在每一章節(jié)或每一部分內(nèi)容結(jié)束后,安排課堂練習(xí)或習(xí)題課,幫助學(xué)生總結(jié)歸納本章節(jié)的主要內(nèi)容。而高等數(shù)學(xué)則相反,教學(xué)內(nèi)容豐富,理論性較強(qiáng),應(yīng)用范圍寬泛,具有高度的抽象性和嚴(yán)密性,對學(xué)生來講,一旦遇到一些困難就會產(chǎn)生畏難情緒,甚至自我放棄。因此,筆者認(rèn)為要想學(xué)好數(shù)學(xué),必須首先在思想上要明白為什么要學(xué)好高等數(shù)學(xué)?學(xué)好高等數(shù)學(xué)有什么用?只有從思想上認(rèn)識到學(xué)習(xí)高等數(shù)學(xué)的重要性,從心理上產(chǎn)生對高等數(shù)學(xué)學(xué)習(xí)的主動性和積極性,然后再結(jié)合適當(dāng)?shù)膶W(xué)習(xí)方法才可能學(xué)好高等數(shù)學(xué)。

二 注重傳統(tǒng)教學(xué)方式與多媒體等電化教學(xué)手段的結(jié)合

高等數(shù)學(xué)的學(xué)科特點決定了教學(xué)過程中,筆、黑板、語言是主要載體,也就是主要采用傳統(tǒng)的教學(xué)手段。但是,教師在組織課堂教學(xué)時當(dāng)好主持人的角色。教師可以有意識地多留意綜藝節(jié)目、娛樂節(jié)目,在課堂組織形式上和語言表達(dá)方式上考慮加入這些元素,會使枯燥的數(shù)學(xué)課變得生動有趣。高等數(shù)學(xué)內(nèi)容十分豐富,理論非常完備,做為非數(shù)學(xué)專業(yè)的教學(xué),要根據(jù)其具體的專業(yè)要求,選擇既能反映該課程基本原理和主要結(jié)構(gòu),又有利于本專業(yè)學(xué)生領(lǐng)悟數(shù)學(xué)的重要性和領(lǐng)略數(shù)學(xué)內(nèi)在美的內(nèi)容,要斷然剔除和刪去陳舊材料,大膽壓縮與改造經(jīng)典內(nèi)容,盡量避免與淡化演算技巧,把基本概念與主要原理敘述清楚闡述明白。對于教材內(nèi)容的處理要符合學(xué)生的認(rèn)識規(guī)律,由易到難,步步推進(jìn),通過一個個臺階,逐步把學(xué)生引導(dǎo)到本課程所要求的深度與廣度。

直觀展現(xiàn)抽象的東西,模擬動態(tài)過程,將學(xué)習(xí)過程情景化,需要結(jié)合其它電化教學(xué)手段[2]。多媒體教學(xué)可以把一些抽象的、難于理解的內(nèi)容具體化、形象化,使在傳統(tǒng)教學(xué)中無法或難于表述的內(nèi)容形象直觀地展現(xiàn)在學(xué)生的面前,使學(xué)生對知識的認(rèn)識更加深刻,記憶更加牢固。例如在講解二重積分的定義時,利用多媒體,可以形象的展示出求解曲邊梯形“分割”、“求和”、“取極限”的步驟,能夠大大的幫助學(xué)生理解二重積分的定義。

三 加強(qiáng)課后練習(xí),讓學(xué)生學(xué)會“舉一反三”

在高等數(shù)學(xué)教學(xué)過程中,經(jīng)常聽到一些學(xué)生反映:上課也能

聽懂,但就是不會做作業(yè)。其實,這是一種非常正常的現(xiàn)象。從“聽懂”到“會做”中間需要有一個環(huán)節(jié)―即練習(xí)的過程,正如你知道駕駛的知識,但是你卻不回開車一樣,需要有一個不斷練習(xí)的過程。課后適當(dāng)?shù)米鲆恍┚毩?xí)題,不僅可以使學(xué)生理解所學(xué)的概念、應(yīng)用定理、公式等來解決問題,而且更重要的是在應(yīng)用的過程中加深對這些概念、定理、公式的理解和領(lǐng)悟。實際上,做題的過程本身就是一個理解和消化吸收的過程,也是一個培養(yǎng)和提高數(shù)學(xué)能力的過程。因為,在解決各種具體的、不同類型的習(xí)題時,不僅可以逐漸澄清、修正對所學(xué)的概念、定理、公式的一些模糊的、不正確的觀念,加深、鞏固對它們的理解,同時也在不斷地培養(yǎng)應(yīng)用這些知識解決實際問題的能力,所以,做適當(dāng)?shù)木毩?xí)是學(xué)好數(shù)學(xué)的一個基本要求。當(dāng)然,我們也不希望采用所謂的題海戰(zhàn)術(shù),而是希望大家學(xué)會透過不同類型習(xí)題的表面看到其本質(zhì)上的相同性,學(xué)會舉一反三,這樣才能事半功倍,才能在教學(xué)進(jìn)度很快的條件下學(xué)好高等數(shù)學(xué)[3]。

對學(xué)生來說,學(xué)好高等數(shù)學(xué),其實最好的、最簡單的方法是在學(xué)習(xí)的過程中學(xué)會發(fā)現(xiàn)高等數(shù)學(xué)學(xué)習(xí)的快樂,并享受這種快樂。只有你感到學(xué)習(xí)的快樂,才會有興趣,才會在高等數(shù)學(xué)學(xué)習(xí)上花費大量的時間和精力,才能從中不僅學(xué)到有用的數(shù)學(xué)知識,而且同時學(xué)會思考問題、解決問題的最科學(xué)的思維方式。針對高校高等數(shù)學(xué)教學(xué)及學(xué)生學(xué)習(xí)現(xiàn)存的一些問題,需要教師和學(xué)生共同努力,綜觀我國教育改革的態(tài)勢,以學(xué)生為本,因材施教、注重個性發(fā)展必將逐漸成為主命脈。

參考文獻(xiàn):

[1]肖明翰.威廉?福克納研究[M].北京:外語教學(xué)與研究出版社.1997.

第5篇:高等數(shù)學(xué)范文

高職教育的教學(xué)改革至關(guān)重要,而高等數(shù)學(xué)作為高職教育中一門基礎(chǔ)課程,肩負(fù)著為學(xué)生提供學(xué)習(xí)后繼課程和解決實際問題的數(shù)學(xué)基礎(chǔ)和數(shù)學(xué)方法的重任,對高職教育的成效起著至關(guān)重要的作用。因此,高等數(shù)學(xué)的改革不容忽視。近幾年來,人們對高等數(shù)學(xué)一直關(guān)注并采取了一系列的改革研究,根據(jù)幾年來的教學(xué)經(jīng)驗,我針對我院學(xué)生的基礎(chǔ)水平和專業(yè)特點,從教學(xué)思想、教學(xué)內(nèi)容、教學(xué)方法和手段等方面分析了我院的高等數(shù)學(xué)教學(xué)改革。

一、從教學(xué)思想入手是關(guān)鍵

高等數(shù)學(xué)是大學(xué)生步入大學(xué)第一學(xué)期的學(xué)習(xí)任務(wù),絕大部分新生對于大學(xué)的學(xué)習(xí)都處于迷茫、放松的狀態(tài),對于高等數(shù)學(xué)的學(xué)習(xí)更是存在恐懼感。高等數(shù)學(xué)與初等數(shù)學(xué)本質(zhì)區(qū)別是它的理論性和抽象性很強(qiáng),如果我們教學(xué)中按照“定義-定理-證明-練習(xí)”這樣的模式,直接地對極限、導(dǎo)數(shù)這些知識進(jìn)行講解,學(xué)生只能被動的接受知識,阻礙了學(xué)生的學(xué)習(xí)興趣。

根據(jù)高等數(shù)學(xué)是客觀世界規(guī)律的抽象與概括的這一特點,我在教學(xué)過程中向?qū)W生講解了這些知識產(chǎn)生的背景和一些數(shù)學(xué)規(guī)律。比如極限的概念,早在兩千多年前,我國的惠施就在莊子的《天下篇》中有一句著名的話:“一尺之棰,日取其半,萬世不竭”,他提出了無限變小的過程,這是我國古代極限思想的萌芽;公元三世紀(jì),我國數(shù)學(xué)家劉徽利用圓內(nèi)接正多邊形并讓多邊形的邊數(shù)趨于無限來計算圓的面積,這個過程中運(yùn)用了極限;17世紀(jì),隨著微積分應(yīng)用的更加廣泛和深入,極限定義就顯得十分迫切和需要;18世紀(jì),數(shù)學(xué)家們基本上弄清了極限的描述性定義;直到19世紀(jì)上半葉,由于對無窮級數(shù)的研究,人們對極限概念才有了較明確的認(rèn)識;1821年柯西提出了極限定義的方法,后來維爾斯特拉斯(KarlWeierstrass)進(jìn)一步加工,成為現(xiàn)在的柯西極限定義。經(jīng)過對極限概念產(chǎn)生和發(fā)展的講解,學(xué)生可以理解由如此漫長的歲月形成的極限概念,體會其在微積分這門學(xué)科中的重要性。同時這能使學(xué)生理解由極限為基礎(chǔ)的高等數(shù)學(xué)和客觀世界是相關(guān)的,引發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,調(diào)動他們的主觀能動性。這樣,學(xué)生在輕松愉快的環(huán)境下擺脫了迷茫,擺脫了為學(xué)習(xí)而學(xué)習(xí)的困境。

二、從教學(xué)內(nèi)容出發(fā)是根本

高職教育屬于職業(yè)技術(shù)教育,是培養(yǎng)高等技術(shù)應(yīng)用型人才的教育。我們在了解學(xué)生所學(xué)專業(yè)課程的基礎(chǔ)上,根據(jù)各專業(yè)的特點,對高等數(shù)學(xué)制訂了相應(yīng)的課程標(biāo)準(zhǔn),有些內(nèi)容在不影響課程的連續(xù)性的情況下,則可以刪去不講,充分體現(xiàn)基礎(chǔ)課程“以應(yīng)用為目的,以必需夠用為度”的原則。從內(nèi)容上可分為三類:

一是必修內(nèi)容,即講授多數(shù)專業(yè)所需要的數(shù)學(xué)知識,一元微積分及其應(yīng)用。由于各專業(yè)所需數(shù)學(xué)知識的深度和廣度不同,為了更好的與專業(yè)知識和就業(yè)要求聯(lián)系起來,在內(nèi)容的側(cè)重上就要求有所不同,主要表象在:

1、內(nèi)容的擴(kuò)充,比如講到導(dǎo)數(shù)的應(yīng)用,經(jīng)濟(jì)類的專業(yè)著重講解邊際函數(shù);機(jī)械類的專業(yè)要涉及到曲柄連桿機(jī)構(gòu)及簡諧運(yùn)動的題目;而電力專業(yè)需要涉及電動勢的一些題目。這樣,學(xué)生能體會到高等數(shù)學(xué)對于專業(yè)的作用。

2、內(nèi)容的刪減,對于曲線的漸近線,無窮區(qū)間上的廣義積分這部分內(nèi)容,管理類專業(yè)就不再講解了;對間斷點的類型,定積分在物理中的應(yīng)用,經(jīng)濟(jì)類的專業(yè)不在涉及了,以做到“必需”。

二是專業(yè)選修內(nèi)容,根據(jù)不同的專業(yè)對高等數(shù)學(xué)的需求開設(shè)補(bǔ)充內(nèi)容,比如金融保險專業(yè)開設(shè)概率統(tǒng)計;自動化專業(yè)開設(shè)以復(fù)變函數(shù)、拉氏變換及概率為主的工程數(shù)學(xué);管道工程開設(shè)線性代數(shù)的內(nèi)容。真正做到基礎(chǔ)服務(wù)于專業(yè),應(yīng)用于專業(yè),以做到“夠用”。

三是興趣選修,開設(shè)數(shù)學(xué)實驗選修。通過數(shù)學(xué)實驗課把數(shù)學(xué)直觀、形象思維與邏輯思維結(jié)合起來,能把抽象的數(shù)學(xué)公式、定理通過實驗得到驗證和應(yīng)用,通過上機(jī)實驗,充分調(diào)動學(xué)生學(xué)習(xí)數(shù)學(xué)理論知識、軟件知識、計算機(jī)知識的積極性,加強(qiáng)動手能力,改善學(xué)生的知識結(jié)構(gòu),這有利于培養(yǎng)學(xué)生的獨立工作能力和創(chuàng)新精神。為滿足專升本的學(xué)生升學(xué)要求,開設(shè)高等數(shù)學(xué)強(qiáng)化班,一方面對高等數(shù)學(xué)內(nèi)容進(jìn)行強(qiáng)化,一方面補(bǔ)授高等數(shù)學(xué)大綱中沒有而高等數(shù)學(xué)專接本考試要考的內(nèi)容,如空間解析幾何,多元微積分,微分方程和級數(shù)。

三、從教學(xué)方法努力是方向

高等數(shù)學(xué)的特點是高度的抽象性、嚴(yán)密的邏輯性和廣泛的應(yīng)用性,令很多學(xué)生感覺理論性太強(qiáng),枯燥乏味。所以我們在教學(xué)過程中,針對學(xué)生的特點和高等數(shù)學(xué)的特點,從以下幾個方面努力:

1、針對目前高職院校學(xué)生基礎(chǔ)水平偏低的現(xiàn)象,我們在講解內(nèi)容時可以降低難度,比如極限的概念,我們以學(xué)生易于理解的描述性定義給出。為使學(xué)生不為應(yīng)試而學(xué)習(xí),我院將高等數(shù)學(xué)總評成績設(shè)為四六制,也就是平時成績和作業(yè)成績占總成績40%,而期末考試占60%,更加注重平日里的能力培養(yǎng)。

2、我院高等數(shù)學(xué)老師參加師資培訓(xùn),學(xué)習(xí)了mathematica,matlab等數(shù)學(xué)軟件,如matlab能進(jìn)行精確復(fù)雜的數(shù)值計算,還能做一些一元函數(shù)或者二元函數(shù)的三維圖形,還可以進(jìn)行動態(tài)演示。利用這些軟件,我們就能建立數(shù)列極限的逼近模型、定積分的近似計算模型,變抽象為直觀,利用課件與黑板相結(jié)合的方法,使課堂生動有趣,提高教學(xué)質(zhì)量。當(dāng)然我們對于數(shù)學(xué)軟件還需要更深層次的學(xué)習(xí)和應(yīng)用。

3、我們在教學(xué)過程中加入數(shù)學(xué)建模的應(yīng)用。如圓柱體的體積一定表面積最小,用費最省,利潤最大,物價上漲時消費選擇等問題,都可以利用建模的思想解決,以開拓學(xué)生的思路,提高分析問題,解決問題的能力。

第6篇:高等數(shù)學(xué)范文

關(guān)鍵詞:應(yīng)用型人才;高等數(shù)學(xué);教學(xué)改革;人才培養(yǎng)模式;改革研究與實踐

一、引言

培養(yǎng)具備基礎(chǔ)理論以及實踐性人才屬于高等教育的重要目標(biāo)之一。高等數(shù)學(xué)屬于重要的數(shù)學(xué)基礎(chǔ)學(xué)科,目前屬于多專業(yè)學(xué)科的重點教學(xué)課程,高等數(shù)學(xué)的知識相對而言理論性較強(qiáng),學(xué)習(xí)難度也比較高,所以整體教學(xué)效果并不理想。對此,探討應(yīng)用型人才培養(yǎng)模式下高等數(shù)學(xué)教學(xué)改革研究與實踐具備顯著實際教育價值。

二、高等數(shù)學(xué)教育改革的必要性

首先,學(xué)生入學(xué)對于數(shù)學(xué)的愛好以及對數(shù)學(xué)知識的需求存在明顯的不均衡,隨著近些年高等教育的招生人數(shù)不斷增多,學(xué)生的基礎(chǔ)差異也在隨之增大,數(shù)學(xué)基礎(chǔ)、喜好以及對數(shù)學(xué)知識的理解能力都存在明顯的差異,學(xué)生態(tài)度以及能力差異也比較突出[1];其次,學(xué)生現(xiàn)狀無法滿足應(yīng)用型人才培養(yǎng)要求。高等數(shù)學(xué)課程普遍是在大學(xué)第一年開始,對于學(xué)生而言因為專業(yè)性意識欠缺以及對課程學(xué)習(xí)的重視度不足,導(dǎo)致整體教學(xué)效果并不理想,學(xué)生也無法掌握各種實用性能力[2];最后,對于中學(xué)教育而言,高等教育中數(shù)學(xué)課程的內(nèi)容深度以及廣度都存在明顯的提升,從注重知識傳承轉(zhuǎn)變?yōu)檫壿嫵橄竽芰Φ奶嵘?,對于學(xué)生的學(xué)習(xí)要求逐漸從被動轉(zhuǎn)變?yōu)橹鲃樱瑢?dǎo)致許多學(xué)生都認(rèn)為高等數(shù)學(xué)的學(xué)習(xí)難度較高,從而形成厭倦的情緒,間接阻礙應(yīng)用型人才的培養(yǎng)目標(biāo)。

三、應(yīng)用型人才培養(yǎng)模式下高等數(shù)學(xué)教學(xué)改革研究與實踐

(一)開展網(wǎng)絡(luò)化資源共享

在應(yīng)用型人才培養(yǎng)模式下,教學(xué)質(zhì)量很大程度取決于在線資源的建設(shè)以及信息化技術(shù)的支持效益。對此,在教學(xué)開始之前,需要積極建設(shè)完善的網(wǎng)絡(luò)化教學(xué)平天,并將高等數(shù)學(xué)的線上、線下資源相結(jié)合對待[3]。當(dāng)前,比較好用的網(wǎng)絡(luò)資源平臺主要是以高校慕課平臺以及Blackborad網(wǎng)絡(luò)平臺、微信平臺為主,在具體教學(xué)中,可以將多種信息化教育模式進(jìn)行補(bǔ)充性的結(jié)合,按照課程建設(shè)的基礎(chǔ)要求配套相應(yīng)的資源庫,同時在內(nèi)容方面覆蓋高等數(shù)學(xué)的相關(guān)知識點,充分體現(xiàn)教學(xué)的基礎(chǔ)流程,同時課件、微課、專業(yè)案例以及練習(xí)題等多方面教學(xué)內(nèi)容。在教學(xué)中需要突出平臺方面的交互性,突出平臺內(nèi)部的師生、學(xué)生之間的交流溝通效益,從而豐富網(wǎng)絡(luò)資源建設(shè)質(zhì)量,推動高等數(shù)學(xué)教育質(zhì)量持續(xù)性提升。

(二)優(yōu)化課件制作

微課視頻屬于應(yīng)用型人才培養(yǎng)模式的一種有效表現(xiàn)形式,其主要是因為應(yīng)用型人才培養(yǎng)模式很難有效應(yīng)用在所有的教學(xué)場合以及所有教學(xué)內(nèi)容方面,所以需要從微課的制作著手,將教學(xué)的重點放在細(xì)化高等數(shù)學(xué)知識方面,并采用合適的內(nèi)容制作相應(yīng)的課程[4]。在高等數(shù)學(xué)教育方面,教師需要有意識的一些抽象枯燥的教學(xué)內(nèi)容,并在教學(xué)中適當(dāng)加入實踐性問題,可以采用一些應(yīng)用價值較高的案例作為微課資源進(jìn)行展示,并對部分難點知識進(jìn)行講解,結(jié)合多媒體教學(xué)效果實現(xiàn)教學(xué)質(zhì)量的提升。因為高等數(shù)學(xué)在教學(xué)方面的學(xué)生基礎(chǔ)存在一定差異,再加上自主學(xué)習(xí)能力的不同,所以在微課制作方面需要保持針對性,結(jié)合學(xué)生的實際學(xué)習(xí)能力進(jìn)行設(shè)計,做到短小精干。另外,在課件制作時需要盡可能維持學(xué)生的參與積極性,借助一些音畫、動畫的設(shè)計方式,提升課堂教學(xué)的趣味性,從而更加輕松的突破教學(xué)難點,達(dá)到提高教學(xué)質(zhì)量的目的。

(三)融合教育模式

在高等數(shù)學(xué)教育中,為了更好地提高學(xué)生的參與積極性,教師可以充分應(yīng)用線上與線下的教育資源,突出落實課堂教學(xué)和在線教學(xué)的融合[5]?;旌鲜浇虒W(xué)屬于傳統(tǒng)教育與網(wǎng)絡(luò)教育的一種結(jié)合形式,屬于一個整體,在教學(xué)設(shè)計方面需要盡可能規(guī)避兩種教學(xué)模式的獨立問題,將課堂教學(xué)之前的預(yù)習(xí)、課堂教學(xué)中的學(xué)習(xí)以及課堂后的復(fù)習(xí)融合起來,在整個教學(xué)中發(fā)揮引導(dǎo)性作用,優(yōu)化課堂教學(xué)的過程。在課堂教學(xué)開始之前,可以借助微課食品的方式為學(xué)生相關(guān)的學(xué)習(xí)知識點,并以課件做到課堂準(zhǔn)確導(dǎo)入,同時加入部分思考題目,促使學(xué)生有目的的預(yù)習(xí)。在課堂教學(xué)中,可以借助微課、多媒體以及傳統(tǒng)教學(xué)模式的融合方式,激發(fā)學(xué)生的學(xué)習(xí)積極性,同時實現(xiàn)教學(xué)過程的形象化講解。在教學(xué)后借助混合式課堂教學(xué)優(yōu)勢,實現(xiàn)線上教學(xué),應(yīng)用網(wǎng)絡(luò)平臺實現(xiàn)知識點的分享討論,并根據(jù)學(xué)習(xí)缺陷做到彌補(bǔ)性教學(xué),按照課堂教學(xué)的難點與重點設(shè)計相應(yīng)的練習(xí)題嗎,促使學(xué)生在課后以獨立或小組討論的方式解決問題。按照高等數(shù)學(xué)教育中個別學(xué)生容易理解的知識點,也可以應(yīng)用翻轉(zhuǎn)課堂的形式進(jìn)行教學(xué),豐富課堂教學(xué)形式的同時,激發(fā)學(xué)生的課堂教學(xué)積極性,鞏固知識點,達(dá)到教學(xué)質(zhì)量的持續(xù)性提升。

(四)充分應(yīng)用數(shù)學(xué)模型,強(qiáng)化概念教學(xué)

在高等數(shù)學(xué)的概念教學(xué)方面,因為知識相對比較枯燥,理論性又比較強(qiáng),所以整體教學(xué)質(zhì)量并不是非常理想。對此,便需要借助建模思想進(jìn)行教學(xué)。例如在介紹微積分時,可以介紹一些促使學(xué)生了解微積分對于社會發(fā)展的重要影響,尤其是以往在天文學(xué)、力學(xué)以及工業(yè)技術(shù)方面的發(fā)展影響,促使學(xué)生了解造船、航海以及機(jī)械制造等過行程中建模思想的意義價值,如求曲線切線、求變速運(yùn)動瞬時速度等過程中,都可以借助模型思想進(jìn)行教學(xué)。另外,在定理知識的證明中,因為一般都比較復(fù)雜,所以講解難度較高,此時便可以借助建模思想,讓學(xué)生了解知識的來龍去脈以及歷史發(fā)展?fàn)顩r,將定理的結(jié)論作為特定的數(shù)學(xué)模型,將定理的條件作為模型的建設(shè)條件,借助問題的預(yù)設(shè)達(dá)到定理結(jié)論,從而實現(xiàn)意識與能力的培養(yǎng)。在練習(xí)題教學(xué)過程中,可以結(jié)合日常生活中的部分實際問題進(jìn)行改編教學(xué),在教學(xué)中可以應(yīng)用相關(guān)數(shù)學(xué)知識、方法實現(xiàn)建模,促使學(xué)生發(fā)現(xiàn)自己所存在的問題,同時應(yīng)用自己所掌握的數(shù)學(xué)問題解決他們。例如,在倒數(shù)的應(yīng)用教學(xué)方面,可以拿牌一些切線斜率、瞬時速度以及水塔水流量等實際性的問題進(jìn)行教學(xué),在極限值問題方面可以安排造價、利潤最值問題,積分方面可以設(shè)計曲邊梯形面積、曲頂柱體體積等內(nèi)容,借助這一些習(xí)題內(nèi)容促使學(xué)生掌握相應(yīng)的數(shù)學(xué)問題,這也是建模數(shù)學(xué)有效應(yīng)用的一種方式。在平常教學(xué)中,可以將數(shù)學(xué)問題與建模有效結(jié)合起來,在教學(xué)中不同環(huán)節(jié)注重對學(xué)生應(yīng)用意識的培養(yǎng),促使學(xué)生可以自覺的應(yīng)用數(shù)學(xué)方法或知識實現(xiàn)對問題的觀察,促使自身所掌握的知識轉(zhuǎn)變?yōu)槟芰?,在?yīng)用意識得到提升的同時實現(xiàn)知識的內(nèi)化。

(五)豐富教學(xué)趣味性,激發(fā)思維理念發(fā)展

高等數(shù)學(xué)屬于一門應(yīng)用性與理論性都比較強(qiáng)的學(xué)科,其幾乎存在于任何學(xué)科與應(yīng)用工程中。對此,在教學(xué)方面,教學(xué)的內(nèi)容中應(yīng)當(dāng)適當(dāng)?shù)牟迦氩糠帜軌蚍从成鐣F(xiàn)象的問題,例如投資問題、流行病的傳播規(guī)律問題等,促使學(xué)生可以應(yīng)用高等數(shù)學(xué)知識時間模型的建設(shè)以及實際問題的解決,并實現(xiàn)對數(shù)學(xué)知識的感性認(rèn)知,形成對高等數(shù)學(xué)的高學(xué)習(xí)興趣,逐漸從被動學(xué)習(xí)轉(zhuǎn)變?yōu)橹鲃犹剿鳌T诰唧w教學(xué)中,可以適當(dāng)?shù)脑黾?到3個科研相關(guān)教學(xué)案例,應(yīng)用高等數(shù)學(xué)相關(guān)知識實現(xiàn)數(shù)學(xué)建模,也就是從問題引入數(shù)學(xué)模型,從軟件求解實現(xiàn)結(jié)果分析,從模型修改實現(xiàn)應(yīng)用能力的提升。例如,在經(jīng)濟(jì)類的高等數(shù)學(xué)教育中,可以從邊際與彈性問題角度著手,多講解一些經(jīng)濟(jì)學(xué)的相關(guān)案例,如“蛛網(wǎng)模型”便是市場經(jīng)濟(jì)下一種供需現(xiàn)象的有效體現(xiàn),此時可以將函數(shù)、復(fù)合函數(shù)、函數(shù)單調(diào)性以及無窮數(shù)列等知識串聯(lián)起來,并最終實現(xiàn)極限這一概念的教育目的。在教學(xué)中,學(xué)生可以借助案例的方式進(jìn)行思考學(xué)習(xí),可以親自體驗高等數(shù)學(xué)在教學(xué)過程中模型的應(yīng)用過程,強(qiáng)化知識的理解,同時可以進(jìn)一步的強(qiáng)化學(xué)習(xí)、應(yīng)用的意識以及興趣,促使學(xué)生可以更好地掌握理論知識,豐富數(shù)學(xué)模型的認(rèn)知以及模型應(yīng)用效益,突出數(shù)學(xué)模型思想的作用,從而達(dá)到教學(xué)質(zhì)量的持續(xù)性提升。

四、結(jié)語

第7篇:高等數(shù)學(xué)范文

關(guān)鍵詞:高等數(shù)學(xué);學(xué)習(xí);方法

新時期高等院校的課程設(shè)計中,高等數(shù)學(xué)作為高等院校的基礎(chǔ)課程之一,對培養(yǎng)高校學(xué)生的邏輯思維能力具有重大作用,而且高等數(shù)學(xué)在其他各個領(lǐng)域及學(xué)科中發(fā)揮出越來越大的作用。數(shù)學(xué)不但深入到物理、化學(xué)、生物等傳統(tǒng)領(lǐng)域,而且深入到經(jīng)濟(jì)、金融、信息、社會等各領(lǐng)域中。特別是計算機(jī)科學(xué)的迅猛發(fā)展,更離不開數(shù)學(xué)。而在沿線,當(dāng)代大學(xué)生(尤其是文史專業(yè)的學(xué)生)普遍缺乏數(shù)學(xué)素養(yǎng)。本文結(jié)合作者的學(xué)習(xí)經(jīng)驗,探討學(xué)習(xí)高數(shù)的幾點方法。

一、做好準(zhǔn)分的預(yù)習(xí)準(zhǔn)備

任何一門學(xué)科的學(xué)習(xí),充分的預(yù)習(xí)都是很有必要的。高等數(shù)學(xué)的學(xué)習(xí)同樣不例外,而且由于高等數(shù)學(xué)嚴(yán)密的邏輯性和相關(guān)性,在課程學(xué)習(xí)之前,充分了解老師即將講什么內(nèi)容,相應(yīng)地預(yù)習(xí)與之相關(guān)內(nèi)容,做到有的放矢,主動學(xué)習(xí)。預(yù)習(xí)是聽好課的前提,雖然不預(yù)習(xí)也能聽懂課,但預(yù)習(xí)后才能做到游刃有余,主動把握,不會把所有的時間和精力浪費在整節(jié)課上,被老師“牽著鼻子走”,打無準(zhǔn)備之仗。如果時間不多,至少應(yīng)該瀏覽一下即將學(xué)習(xí)的主要內(nèi)容,獲得一個大概的印象,這可以在一定程度上幫助你在課堂上跟上教師的思路,如果時間比較充裕,除了溯覽之外,還可以進(jìn)一步細(xì)致地閱讀部分內(nèi)容,并且準(zhǔn)備好問題,看一下自己的理解與教師講解的有什么區(qū)別,有哪些問題需要與教師討論。如果能夠做到這些,那么你的學(xué)習(xí)就會變得比較主動、深入,會取得比較好的果。

例如在學(xué)習(xí)《定積分的定義》這一節(jié)課前,要先把導(dǎo)數(shù),微分和不定積分的相關(guān)概念預(yù)習(xí)好。這樣才能更有效地聽課。

二、課堂上全心投入

聽、記、思考必須是一個相結(jié)合的過程。課堂上一定要注意注意老師的講解方法、思路,以及分析問題和解決問題的過程與技巧,同時注意你預(yù)習(xí)時遇到的問題,記好課堂筆記。課堂上,要適當(dāng)對老師強(qiáng)調(diào)的重點或者比較復(fù)雜深刻的做相關(guān)的筆記。大學(xué)的高等數(shù)學(xué)教學(xué)中,教材只是作為一種主要的參考書,老師常常不完全按照教材授課,這就要求學(xué)生以課堂上老師所講的重點和難點為線索,通過大量閱讀教材和同類參考書,充分消化和掌握課堂上所講授內(nèi)容。由于高等數(shù)學(xué)內(nèi)容多,難度大,要求高,筆記可以為我們的溫故知新提供一個書面思路,但是必須處理好聽與記的關(guān)系,才達(dá)到預(yù)期的效果。比如,當(dāng)老師講到Rolle定理的證明時,可能會用到費馬定理,如果單純聽課可能理解不透。所以不妨一邊聽課,一邊記錄。

三、及時復(fù)習(xí)整理

課下結(jié)合教材和筆記進(jìn)行復(fù)習(xí),要對筆記進(jìn)行整理按自己的思路,整理出這一次課的內(nèi)容。要用作題來檢驗自己的學(xué)習(xí),是真懂了還是沒完全懂。對于沒有徹底讀懂的地方再反復(fù)思考,直到完全讀懂。接著是階段總結(jié)。每學(xué)完一章,自己要作總結(jié)。總結(jié)包括一章中的基本概念,核心內(nèi)容;本章解決了什么問題,是怎樣解決的;依靠哪砦重要理論和結(jié)論,解決問題的思路是什么?理出條理,歸納出要點與核心內(nèi)容以及自己對問題的理解和體會。最后是全課程的總結(jié)。在考試前要作總結(jié),這個總結(jié)將全書內(nèi)容加以整理概括,分析所學(xué)的內(nèi)容,掌握各章之間的聯(lián)系。這個總結(jié)很重要,是對全課程核心內(nèi)容、重要理論與方法的綜合整理。在總結(jié)的基礎(chǔ)上。自己對全書內(nèi)容要有更深一層的了解,要對一些稍有難度的題加以分析解決以檢驗自己對全部內(nèi)容的掌握。尤其是檢驗一下對基礎(chǔ)知識的掌握程度。高等數(shù)學(xué)的基礎(chǔ)知識是指它所涉及的基本概念、基本理論和基本方法?;A(chǔ)知識是構(gòu)成數(shù)學(xué)知識系統(tǒng)的基本框架。人的知識應(yīng)當(dāng)是系統(tǒng)而有序地分類儲存在大腦中的,這樣有利于需要時能迅速地將其搜索到。通常可以圍繞一個基本概念,一種基本理論或方法形成一個知識點,而且許多知識點之間又有著內(nèi)在聯(lián)系,這些知識點的有機(jī)聯(lián)結(jié)最終形成一個科學(xué)、合理的知識體系?;A(chǔ)知識的掌握關(guān)鍵在于理解基本概念,理解基本概念可從以下幾方面入手。

1、了解概念產(chǎn)生的背景和過程

例:積分問題的提出。古時人們?yōu)榱撕啽愕厍蠼獠灰?guī)則圖形面積想到的。先是將圖形無限分割成規(guī)則圖形,分別求面積然后相加。多了解一些背景知識有利于對概念的理解,能提高學(xué)習(xí)興趣,學(xué)過之后可以更好地運(yùn)用它去解決問題。例如理解數(shù)列極限概念對學(xué)習(xí)定積分和無窮級數(shù)中有重要意義。

2、掌握概念的本質(zhì)屬性

能用自己的話準(zhǔn)確地表述一個概念而不是只會背誦定義,是理解慨念的重要表現(xiàn),為此還要從多角度對其進(jìn)行辨析。

3、掌握基本定理和基本方法

了解條件和結(jié)論的關(guān)系。條件是充分的還是必要的?定理證明的主要思路是什么?條件有所變化時對結(jié)論有何影響?定理的逆命題是真是假?若為真能否證明?若為假能否舉出反例?

四、不斷演練提高

要想學(xué)好數(shù)學(xué),多傲題目是難免的。熟悉掌握各種題型的解題思路,剛開始要從基礎(chǔ)題人手,以課本上的習(xí)題為準(zhǔn),反復(fù)練習(xí)打好基礎(chǔ),再找一些課外的習(xí)題。以幫助開拓思路,提高自己的分析,解決問題能力,掌握一般的解題規(guī)律。對于一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養(yǎng)成良好的解題習(xí)慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進(jìn)入最佳狀態(tài),在考試中能運(yùn)用自如。還要學(xué)會以數(shù)學(xué)思想學(xué)習(xí)知識點,用數(shù)學(xué)方法解決問題。所用的數(shù)學(xué)方法有函數(shù)思想,分類討論思想,轉(zhuǎn)化思想,數(shù)形結(jié)合思想等。做數(shù)學(xué)題并不提倡題海戰(zhàn)術(shù),而是貴在精而不在多,“精”大至可以表現(xiàn)在三個方面:一是廣,二是深,三是懂。

參考文獻(xiàn):

[1]楊華麗.陸華麗.陸載涵高等數(shù)學(xué)空間關(guān)系多媒體CAI系統(tǒng)的數(shù)據(jù)結(jié)構(gòu)和圖形生成技巧[J].微型電腦應(yīng)用2001,17(2)

[2]文舒尚奇.《高等數(shù)學(xué)》講稿的設(shè)計與制作[J].渭南師范學(xué)院學(xué)報2006,21(5)

第8篇:高等數(shù)學(xué)范文

[關(guān)鍵詞]高等數(shù)學(xué) 教師的引導(dǎo) 學(xué)習(xí)的興趣 良好的習(xí)慣

高等數(shù)學(xué)作為高等學(xué)校的一門基礎(chǔ)理論必修課程,對于學(xué)生的素質(zhì)教育和能力培養(yǎng)起著至關(guān)重要的作用。要提高高等數(shù)學(xué)的教學(xué)質(zhì)量,自然少不了教師和學(xué)生的共同努力。本文筆者從以下方面談了自己的建議。

一、教師引導(dǎo)學(xué)生學(xué)好高等數(shù)學(xué)的建議

1.教師要吃透教材,有目的地引導(dǎo)學(xué)生發(fā)現(xiàn)問題,解決問題

美國著名心理學(xué)家布龍菲爾德說:“數(shù)學(xué)不過是語言所能達(dá)到的最高境界”。這說明數(shù)學(xué)學(xué)科的高度抽象性和概括性,也說明了高等數(shù)學(xué)的概念很難理解。在當(dāng)前條件下,高等數(shù)學(xué)課堂授課仍是以教師講授為主,學(xué)生學(xué)習(xí)數(shù)學(xué)普遍存在不善于思考,不會發(fā)現(xiàn)問題,對理論理解不深不透等問題。在教學(xué)過程中,教師要善于啟發(fā)學(xué)生自己發(fā)現(xiàn)問題的欲望,要鼓勵他們大膽地表達(dá)自己的猜想和想法,指導(dǎo)他們多角度的思考問題,為自己的觀點尋求依據(jù)。教師還應(yīng)引導(dǎo)學(xué)生展開爭論,在爭論中,通過不同觀點的交鋒和碰撞,加深對問題的理解,真正激發(fā)學(xué)生的求知欲望和思考主動性。同時,教師也能發(fā)現(xiàn)教學(xué)的薄弱環(huán)節(jié)和學(xué)生學(xué)習(xí)的障礙點,及時調(diào)整教學(xué)方法,給予啟發(fā)和指導(dǎo),使教學(xué)更具有針對性。

例如,在講解定積分的概念時,我們必須先求曲邊梯形的面積。這個時候,教師就要有目的地去引導(dǎo),把曲邊形分割成幾個矩形,矩形的面積求法,學(xué)生是很熟悉的,把幾個矩形的面積相加,就可以近似地求出曲邊梯形的面積。但是還是沒法知道準(zhǔn)確值,這時教師再適當(dāng)?shù)囊龑?dǎo),把曲邊梯形再進(jìn)一步分割,讓學(xué)生看到分得越多,得到的值就越接近準(zhǔn)確值,最后求極限,就可以把問題解決。通過這樣慢慢的引導(dǎo),學(xué)生就會明白概念的來龍去脈,對概念的理解會深刻一點,也容易記住概念的實質(zhì),而不再死記硬背,起到事半功倍的效果。這種讓學(xué)生參與其中而不再被動接受知識的授課方式,能促進(jìn)他們從中學(xué)的那種思維方式向大學(xué)學(xué)習(xí)的思維方式轉(zhuǎn)變。

2.培養(yǎng)學(xué)生學(xué)習(xí)的興趣和創(chuàng)新發(fā)散思維

教師講授新知識時,要采取各種各樣的方法,調(diào)動學(xué)生學(xué)習(xí)的積極性。比如上課時多和學(xué)生交流,了解他們在想什么,學(xué)習(xí)數(shù)學(xué)時有什么困難,多關(guān)心他們,師生之間融洽的關(guān)系也能增加學(xué)生的學(xué)習(xí)興趣。在課堂上要堅持“教師是主導(dǎo),學(xué)生是主體”的教學(xué)原則。講課一定要做到思路清晰、重點突出、層次分明,對于重點、難點的地方,要不厭其煩,運(yùn)用各種方法,反復(fù)解釋,使學(xué)生理解其精髓;對于次要、簡單的地方可以一帶而過,讓學(xué)生課后自學(xué)。課堂上只有精講,才能給學(xué)生留出較為充裕的時間進(jìn)行消化吸收。如果講得太細(xì),第一是時間不允許,第二是陷入繁瑣的細(xì)節(jié),反倒使學(xué)生抓不住要領(lǐng)。對于學(xué)生而言,聽課只是從老師那里接受到了知識,若不經(jīng)過消化吸收,就永遠(yuǎn)不是自己的東西。另外在講解有些概念的時候,我們可以引用經(jīng)典例子,讓學(xué)生了解數(shù)學(xué)的發(fā)展歷史,這樣就可以使課堂沒有那么枯燥無味了。

培養(yǎng)數(shù)學(xué)的思維能力是高等數(shù)學(xué)教學(xué)的目標(biāo)。數(shù)學(xué)作為一種社會實踐基礎(chǔ)之上由思維構(gòu)造的模式,本身就有很強(qiáng)的創(chuàng)造性。因此,在教學(xué)過程中,教師要不斷加強(qiáng)對學(xué)生創(chuàng)新性思維的培養(yǎng)和訓(xùn)練。通過具體地理解數(shù)學(xué)理論,獨立探索鉆研和解決數(shù)學(xué)問題,不斷培養(yǎng)學(xué)生敏銳的洞察力和豐富的想象力,從而提高數(shù)學(xué)思維的靈活性和創(chuàng)造性。

在教學(xué)過程中,教師要特別加強(qiáng)對學(xué)生發(fā)散性思維的培養(yǎng)和訓(xùn)練。發(fā)散性思維是一種以某一問題為發(fā)散源,對已知信息進(jìn)行多方面、多角度的思考,不局限于既定的理解,提出新問題、探索新路徑,從而使問題得到解決或升華的思維方式。一題多解、一題多變、一題帶動其它關(guān)聯(lián)問題等等都可以激活人思維的敏捷性、自主性、創(chuàng)新性。培養(yǎng)發(fā)散思維是發(fā)展數(shù)學(xué)創(chuàng)造性思維的一條有效途徑。

這就要求教師在教學(xué)過程中要充分調(diào)動學(xué)生學(xué)習(xí)的自主性,為學(xué)生提供自由提問、質(zhì)疑、探究問題和將自己所學(xué)知識應(yīng)用于解決實際問題的機(jī)會,并且創(chuàng)造寬松環(huán)境,最大限度地滿足學(xué)生個體差異發(fā)展的需要。教師要善于使用鼓勵、激將和贊揚(yáng)等手段,激發(fā)學(xué)生的興奮點,對他們敢于積極思考,主動發(fā)表自己的意見,無論對錯都要及時給予鼓勵。對他們能互幫互學(xué),虛心求教的合作意識給予贊揚(yáng)。有時教師還要使用激將法挑起他們敢于挑戰(zhàn)自我的斗志,用挫折和批評訓(xùn)練他們的意志??傊?教師要努力營造良好和諧的課堂氣氛,讓學(xué)生從中感受到數(shù)學(xué)學(xué)習(xí)的快樂,增強(qiáng)學(xué)生對高等數(shù)學(xué)學(xué)習(xí)的興趣,提高學(xué)生鍛煉自己創(chuàng)造性思維的積極性和主動性。

3.改革作業(yè)布置的方法

作業(yè)是學(xué)科教學(xué)的延伸和補(bǔ)充,是對單位時間內(nèi)所學(xué)知識的復(fù)習(xí)與鞏固,是教師用來檢查教學(xué)效果、指導(dǎo)學(xué)生學(xué)習(xí)的教學(xué)手段之一。在高等數(shù)學(xué)傳統(tǒng)教學(xué)模式中,作業(yè)的形式與內(nèi)容單調(diào)、陳舊,基本上就是教材每章或每節(jié)與教學(xué)內(nèi)容相關(guān)的習(xí)題,這些習(xí)題的模式、條件和答案是固定的,處理方法大多與相關(guān)例題的處理方法相同,無論形式與內(nèi)容都缺少變化和新意。同時,傳統(tǒng)的作業(yè)布置方式常常是全班做同樣的題目,而學(xué)生學(xué)習(xí)高等數(shù)學(xué)的能力、水平與目標(biāo)是不同的,這樣的作業(yè)缺乏彈性,不能體現(xiàn)和滿足學(xué)生的個性需求。因此,我們應(yīng)該積極探索作業(yè)布置方式的改革。

具體地說,我們可以在豐富形式和更新內(nèi)容上下功夫:一是教師可以增加口頭表達(dá)型和合作型的作業(yè)。教師在課前拿出幾分鐘時間,讓學(xué)生自己說說對教材中的任何一個公式、定理、概念等等的理解,這種做法一方面有利于提高學(xué)生口頭的數(shù)學(xué)語言的表達(dá)能力,另一方面給教師提供了發(fā)現(xiàn)學(xué)生問題并及時糾正和了解學(xué)生的機(jī)會。二是教師應(yīng)增加不同層次的作業(yè),做到必做與選做的結(jié)合。必做題是學(xué)習(xí)高等數(shù)學(xué)必須達(dá)到的一些基本要求型題目,選做題則是有一定難度的題目。這樣學(xué)生可根據(jù)自己的情況來選做,既保持了學(xué)習(xí)水平低的學(xué)生學(xué)習(xí)的自信心,也讓學(xué)習(xí)水平高的學(xué)生的潛能得到發(fā)揮、發(fā)展。三是在作業(yè)內(nèi)容上,教師應(yīng)多設(shè)計開放型和應(yīng)用型的習(xí)題。這樣的習(xí)題具有條件不完備、結(jié)論不確定的特點,在尋找多種答案的最優(yōu)解過程中,有利于培養(yǎng)學(xué)生思維的廣闊性、靈活性和創(chuàng)造性,

二、學(xué)生學(xué)好高等數(shù)學(xué)的建議

1.調(diào)整心態(tài),轉(zhuǎn)變觀念,樹立自信心

學(xué)生的心態(tài)對聽課效果有著重要的影響。教學(xué)是教師和學(xué)生互相適應(yīng)的過程,大一學(xué)生剛從中學(xué)升入大學(xué),對于大學(xué)數(shù)學(xué)課堂教學(xué)還不太適應(yīng),對于教師的依賴心理較強(qiáng)。一部分學(xué)生期望教師把知識講深講透,在課堂上把所有問題都解決掉,這種心理是和大學(xué)的教學(xué)特點不相容的。教師要注意引導(dǎo)學(xué)生們調(diào)整學(xué)習(xí)心態(tài)和學(xué)習(xí)方法,主動地適應(yīng)大學(xué)數(shù)學(xué)的課堂教學(xué),培養(yǎng)他們自學(xué)的能力,在教學(xué)中要允許學(xué)生有一個適應(yīng)過程。在第一學(xué)期剛開學(xué)的前幾周,我們注意到了由中學(xué)到大學(xué)應(yīng)有一個銜接過程,講課進(jìn)度稍慢,較難的內(nèi)容講得詳盡些,隨著學(xué)生對大學(xué)數(shù)學(xué)的課堂教學(xué)的適應(yīng),講課進(jìn)度隨之加快,并著重分析基本方法、重點和難點。如果學(xué)生能夠盡快地調(diào)整好心態(tài),主動適應(yīng)大學(xué)數(shù)學(xué)的課堂教學(xué),不僅能夠使教師更好地發(fā)揮自己的教學(xué)特長,而且可以幫助學(xué)生培養(yǎng)良好的學(xué)習(xí)習(xí)慣,注意這一點,就會使課堂教學(xué)取得更好的效果。

數(shù)學(xué)是一門深奧而又有興趣的課程。增加對這門課程的自信心,不畏懼它,你就會很容易接受這門課,你也會發(fā)覺其實這門課程并不難,這對于學(xué)好數(shù)學(xué)是一個非常的條件。另外,學(xué)生自己也應(yīng)從心理上適應(yīng)大學(xué)的數(shù)學(xué)學(xué)習(xí)。因為高等數(shù)學(xué)與初等數(shù)學(xué)相比,概念復(fù)雜、理論性強(qiáng)、推理嚴(yán)謹(jǐn),這些特點很容易使學(xué)生對學(xué)好數(shù)學(xué)缺乏信心,進(jìn)而對數(shù)學(xué)學(xué)習(xí)產(chǎn)生抵觸情緒。要克服這種情緒,首先就要學(xué)生增強(qiáng)學(xué)好數(shù)學(xué)的自信心,克服害怕厭倦的心理,這是學(xué)好數(shù)學(xué)的前提。要消除這種消極的思想就要求學(xué)生在學(xué)習(xí)中能夠懂得數(shù)學(xué)、應(yīng)用數(shù)學(xué),培養(yǎng)喜歡數(shù)學(xué)的興趣,把握學(xué)習(xí)的主動權(quán),提高學(xué)習(xí)的自覺性。

2.多想多做,培養(yǎng)良好的學(xué)習(xí)習(xí)慣

多想多做是學(xué)好數(shù)學(xué)的關(guān)鍵。多想是根本,多做是基礎(chǔ)。多做是為了熟能生巧,是為了真正應(yīng)用,是學(xué)好數(shù)學(xué)的前提條件,而多想是學(xué)好數(shù)學(xué)的根本條件。學(xué)數(shù)學(xué)要知道舉一反三,當(dāng)老師講到某一點或某一類型的問題時,你的思路就應(yīng)拓展開來,不應(yīng)僅僅局限于這一點或這一類型的問題,而應(yīng)該把前面所學(xué)的知識點結(jié)合起來,想想如果你碰到這種題目你會怎么辦?假如以后碰到這種類型的題目你又會怎么樣?其實數(shù)學(xué)是個活學(xué)問也是個死學(xué)問。正所謂萬變不離其宗,所有的題目都是學(xué)過的公式和方法的轉(zhuǎn)變和變型。

許多同學(xué)都會出現(xiàn)這種情況,上課教師講時聽懂了,下課后自己做卻做不出來。這說明,數(shù)學(xué)必須要做,懂了不一定會做。對于數(shù)學(xué)的題目要學(xué)會分析,不要忽視每一個已知條件,在考慮已知條件時一定要聯(lián)想到相關(guān)的公式,而如何能充分的靈活的運(yùn)用公式呢,這就是多做能產(chǎn)生的效果了。學(xué)好數(shù)學(xué),學(xué)懂?dāng)?shù)學(xué),主要的是“通”,而如何能“通”?這就是日積月累的多想多做。

古人曰:“凡事預(yù)則立,不預(yù)則廢?!睂W(xué)習(xí)中也同樣適用。在學(xué)習(xí)中預(yù)習(xí)也是很重要的,預(yù)習(xí)可以提高課堂學(xué)習(xí)質(zhì)量。因為提前把知識點看過后,老師在講新內(nèi)容時,可以跟得上老師的思路。另外帶著問題聽課,可以集中精神,把主要精力用在“刀刃”上。從小上學(xué)我們就提倡課前預(yù)習(xí),課堂上認(rèn)真聽講,課后復(fù)習(xí)鞏固,這樣的好習(xí)慣在我們學(xué)習(xí)高等數(shù)學(xué)時同樣很有效。預(yù)習(xí)首先應(yīng)從總體上把握所學(xué)內(nèi)容,把以前與之有聯(lián)系的內(nèi)容瀏覽一遍。看哪些內(nèi)容是自己學(xué)過的,哪些是自己新接觸的,分析新知識與以前學(xué)的知識有什么聯(lián)系和區(qū)別。另外,在上課時一定要精神飽滿、專心聽講,緊跟老師的思路,積極思考老師上課時提出的問題,遇到不理解的地方,一定和老師多交流,及時把問題解決掉。

一節(jié)課下來,課后的復(fù)習(xí)鞏固同樣很重要。大學(xué)數(shù)學(xué)與高中數(shù)學(xué)教學(xué)相比,課時明顯減少,一節(jié)課講的內(nèi)容較多,老師課后也不可能象高中那樣安排時間領(lǐng)著學(xué)生復(fù)習(xí),所以,學(xué)生必須在課余時間自己復(fù)習(xí)鞏固所學(xué)知識。課后一定要自覺的多做一些練習(xí)題。做練習(xí)不僅可以加深對內(nèi)容的理解,使所學(xué)知識更加牢固,而且做練習(xí)題還可以檢驗自己掌握知識的程度。千萬記住課前預(yù)習(xí)、課堂上認(rèn)真聽講、課后復(fù)習(xí)鞏固,三者缺一不可。

綜上所述,一個人要想學(xué)好高等數(shù)學(xué),就必須在老師和自己身上下功夫。既要重視教師在教學(xué)過程中的引導(dǎo)作用,又要加強(qiáng)自身各種素質(zhì)的培養(yǎng),調(diào)整心態(tài),樹立信心,養(yǎng)成良好的習(xí)慣,從而提高高等數(shù)學(xué)的學(xué)習(xí)效率。

參考文獻(xiàn):

[1]李如.如何幫助學(xué)生盡快地適應(yīng)高等數(shù)學(xué)的學(xué)習(xí)[J].基礎(chǔ)數(shù)學(xué)研究,2006,(6).

第9篇:高等數(shù)學(xué)范文

關(guān)鍵詞:高等數(shù)學(xué) 藝術(shù)性 Rolle定理 重現(xiàn)

在高等數(shù)學(xué)的教學(xué)與學(xué)習(xí)中,不可避免的要遇到"聽不懂,學(xué)不會,算不出"的問題。而在求解的過程中,一道題要花一小時甚至更久的現(xiàn)象也愈發(fā)頻繁,這就讓有些學(xué)生甚至教師感到沮喪。有人不禁會想,花上這么久的時間,僅僅為了算一道數(shù)學(xué)題,解決不了任何實際生活中的問題,這未免代價太大了。于是就有了越來越多的人慢慢的放棄了高等數(shù)學(xué)。

事實上,高等數(shù)學(xué)雖然表面與生活聯(lián)系不大,卻可以培養(yǎng)學(xué)生的邏輯思維推理能力,建立數(shù)學(xué)模型能力,運(yùn)算能力,抽象思維能力等等。高等數(shù)學(xué)中的概念、定理和方法,盡管條理清楚,思維嚴(yán)密,卻不易深入掌握。作為教師已適應(yīng)了這種體系,可對學(xué)生(初學(xué)者)來說,很難馬上適應(yīng)這種不明目的抽象理論及其嚴(yán)密論證。勢必造成學(xué)生難以理解,進(jìn)而越聽越糊徐,導(dǎo)致厭學(xué)。因此,如果能夠在教學(xué)的過程中,一方面向?qū)W生闡述高等數(shù)學(xué)對于思維能力的重要用處;另一方面讓學(xué)生發(fā)現(xiàn)高等數(shù)學(xué)中所蘊(yùn)含的"藝術(shù)性",使學(xué)生能夠帶著欣賞的眼光來認(rèn)識這些概念和定理,這樣就能夠充分刺激學(xué)生的學(xué)習(xí)興趣,甚至對于一些復(fù)雜的問題,學(xué)生遇到困難時心里可能會這樣想:"一件藝術(shù)品,總不可能一眼就看出其藝術(shù)性吧。"從而有動力來進(jìn)行深入的剖析。

高等數(shù)學(xué)中我們所接觸的幾乎所有概念與定理,就其理論的嚴(yán)密性和結(jié)構(gòu)的完整性來說,其實都是一件件的藝術(shù)品,是之前的偉大數(shù)學(xué)家們嘔心瀝血的杰作。只不過我們現(xiàn)在看到的只是最后的成品,看不到創(chuàng)造這些藝術(shù)品的艱辛過程。如果能夠在教學(xué)過程中,給學(xué)生重現(xiàn)這些過程,并一步步的讓學(xué)生體驗要做到毫無漏洞所需要的努力,最后將一個完整的定理展現(xiàn)給學(xué)生。就像一幅美術(shù)作品一樣,了解了作畫的過程,中間的每一個細(xì)節(jié),并且看到了最后的作品,再加以語言的引導(dǎo),所謂欣賞藝術(shù)的眼光自然就產(chǎn)生了。下面我通過一個定理的講授來簡單說明一下這個過程。

例、Rolle定理:

如果函數(shù)f(x) 滿足:

1.在閉區(qū)間[a ,b]上連續(xù),

2.在開區(qū)間(a,b) 內(nèi)可導(dǎo),

3.在區(qū)間端點的函數(shù)值相等,即f(a)=f(b) ,

那么在(a,b) 內(nèi)至少有一點%g (a

這個定理的條件有三個,結(jié)論是找到至少一個一階導(dǎo)數(shù)為零的點,即駐點。如果按照定理順序,向?qū)W生一一講解條件和結(jié)論,很難讓學(xué)生腦子里產(chǎn)生對應(yīng),學(xué)生也許會記住這些結(jié)論,但形不成具體的印象。

那么如何用盡量具體的語言描述這個定理,并且在這個過程中體現(xiàn)出其藝術(shù)價值呢?

首先,畫一條連續(xù)并且光滑的曲線(這里刻意的不畫直線,最好多拐幾個彎),并用一條水平的直線來截取。讓同學(xué)們看著這條曲線思考,如果這條曲線想做到"兩端一樣高",那么它至少要拐一個彎。對于這樣一個問題,事實上就是Rolle定理的本質(zhì)內(nèi)容。光滑即可導(dǎo),端點函數(shù)值相等即兩端一樣高,導(dǎo)數(shù)等于零的點即能夠做出一條水平的切線,其實就是拐彎處的點。到這里,具體的對應(yīng)就產(chǎn)生了,然而學(xué)生心里可能會覺得太容易,甚至有些不屑,如此簡單的問題也能稱得上是定理?藝術(shù)就更不必提了。

隨后我們開始一起分析這個定理產(chǎn)生的過程和中間遇到的困難。事實上這個定理并不是Rolle發(fā)明的,他只是發(fā)現(xiàn)了這個問題的前身,是由后來的數(shù)學(xué)家不斷加以完善,最后為了紀(jì)念他提出的原始問題,才冠以他的名字的。我向?qū)W生們介紹這一過程并在中間略微修改,讓學(xué)生更加易懂。原始問題是:兩端一樣高的光滑曲線,中間一定會拐彎。請同學(xué)們討論這個命題的正確性,并和最后的定理加以對照,其實我們就是在重現(xiàn)定理產(chǎn)生的過程。

就像一件藝術(shù)品一樣,首先是一個樸素的想法或模型,然后逐步加以修正,把能夠發(fā)現(xiàn)的瑕疵全都找到并且完善,最后成型。

如此簡單的一個原始問題,但中間卻有很大的漏洞。

提問:如果曲線不是連續(xù)的,即有間斷點,會遇到什么問題?同學(xué)們自己動手開始畫一畫,有的人畫出的曲線仍然是拐彎的,但有的人就會發(fā)現(xiàn)問題所在:如果在拐彎處恰巧斷開呢?事實上,這一"恰巧斷開"就是第一個瑕疵。為了避免這個漏洞,才加上了連續(xù)性的條件。

到這里似乎就沒什么漏洞了,現(xiàn)在把修補(bǔ)后的原始問題再次闡述:"一條連續(xù)的,兩端一樣高的光滑曲線,中間一定會拐彎。"同學(xué)們對比定理內(nèi)容,找出區(qū)別。細(xì)心的同學(xué)會發(fā)現(xiàn),定理的前兩個條件都在強(qiáng)調(diào)區(qū)間端點處的連續(xù)和可導(dǎo)的情況。補(bǔ)充提問,如果把定理的前2個條件就寫成:"在閉區(qū)間上連續(xù)并且可導(dǎo)",定理的結(jié)論是否成立?答案當(dāng)然是肯定的。但這樣的話條件未免有點太"強(qiáng)"了,這時就進(jìn)一步顯出了這個定理的藝術(shù)性,要做到毫無漏洞,并不是一味的加強(qiáng)條件,而是盡可能的讓條件減弱并使結(jié)論成立,從而使得定理的用途盡可能的廣泛。這時再畫一段兩端一樣高的曲線,中間光滑,但兩端畫成有"尖"的。讓同學(xué)們思考,這兩端的"尖"是否影響了曲線一定會拐彎這一結(jié)論?答案是否定的,也就是第2個條件的完善:"在開區(qū)間內(nèi)可導(dǎo)"即可。

條件的完善其實就是定理的形成過程,也就是對藝術(shù)品的修飾。這時回顧一下這個定理,條件的加強(qiáng)和減弱都是一種藝術(shù)行為,并且再看看條件還是否可以有所修改。

這時有同學(xué)會提問,或者心里會有所思考,再或者教師進(jìn)一步提問:"那干脆把兩個條件都改成開區(qū)間好了。"事實上這一過程已經(jīng)顯現(xiàn)出了大家對藝術(shù)的追求和探索,也對這個定理的理解層面有了進(jìn)一步的加深。如果把條件1改成"開區(qū)間內(nèi)連續(xù)",請同學(xué)們還是自己畫一畫,看結(jié)果能否成立。這時可能大多數(shù)同學(xué)都會說不影響結(jié)果,因為這確實是一個很難發(fā)現(xiàn)的問題。進(jìn)一步加以引導(dǎo),要畫成開區(qū)間內(nèi)連續(xù),但兩個端點是間斷的這種情況,看看是否一定能夠拐彎。有可能就會有人成功的畫出了反例:沒有拐彎但一個端點是空心的,取值與另一端一樣高的情況。

因此,要想使定理的條件做到恰到好處,需要不斷的加以修正,這種嚴(yán)密的思維正是高等數(shù)學(xué)的精髓所在,也是每一種藝術(shù)要想達(dá)到極致所必須具備的條件之一。

這個定理到這里也就基本學(xué)習(xí)完畢,大家一起探索,思考,對條件加以分析和修改,不斷的反復(fù)試驗,最后終于得到了最嚴(yán)密的結(jié)論。這時再請回顧整個過程,就像我們一起完成了一件藝術(shù)作品一樣,成就感不言而喻。當(dāng)然,有同學(xué)會提出一些自己的看法和問題,也可以大家一起繼續(xù)討論。

高等數(shù)學(xué)作為一門工具性學(xué)科,很容易就陷入理論與實際脫節(jié)的怪圈,同學(xué)們的學(xué)習(xí)也因此變得"空對空"。認(rèn)為數(shù)學(xué)沒用,將來自己絕不會走數(shù)學(xué)這條路的同學(xué)不占少數(shù),這雖然有可能是學(xué)生們不愿學(xué)習(xí)的借口,但卻在某些方面是事實。因此,對于看起來"沒用"的數(shù)學(xué),如果實在不能把它變得"有用",那么用欣賞的眼光來看待它,發(fā)現(xiàn)它內(nèi)部的藝術(shù)性,總比把它看作是一些枯燥無味的符號要好的多,畢竟藝術(shù)品們究竟有多大的用處,也很難講,不是嗎?

參考文獻(xiàn):

[1]徐濤,李海青.《提高高等數(shù)學(xué)教學(xué)的藝術(shù)性》《青海師專學(xué)報》2003年 第6期31-32頁

[2]郭躍進(jìn).《論提高高等數(shù)學(xué)教學(xué)的科學(xué)性和藝術(shù)性》《常熟理工學(xué)院學(xué)報》2008年第22卷第6期