公務(wù)員期刊網(wǎng) 精選范文 農(nóng)業(yè)預(yù)測方法范文

農(nóng)業(yè)預(yù)測方法精選(九篇)

前言:一篇好文章的誕生,需要你不斷地搜集資料、整理思路,本站小編為你收集了豐富的農(nóng)業(yè)預(yù)測方法主題范文,僅供參考,歡迎閱讀并收藏。

農(nóng)業(yè)預(yù)測方法

第1篇:農(nóng)業(yè)預(yù)測方法范文

關(guān)鍵詞:財政專項;支農(nóng)政策;農(nóng)業(yè);發(fā)展方式

中圖分類號:F812.8 文獻標識碼:A 文章編號:1672―3309(2009)11―0060-04

一、引言

2004年以來,中央先后出臺直接補貼、良種補貼、農(nóng)機具購置補貼以及最低收購價等一系列扶持糧食生產(chǎn)的政策措施。2006年,考慮柴油、化肥、農(nóng)藥、農(nóng)膜等農(nóng)業(yè)生產(chǎn)資料價格變動因素,又出臺了對種糧農(nóng)民的農(nóng)業(yè)生產(chǎn)資料綜合直接補貼政策。2008年,中央預(yù)算安排“三農(nóng)”投入5625億元,比上年增加1307億元,進一步加大對農(nóng)業(yè)和糧食生產(chǎn)的支持力度,2008年對農(nóng)民的直接補貼總額達到789億元。在增加對農(nóng)民直接補貼的同時,中央財政設(shè)立的良種補貼范圍不斷擴大,補貼品種擴大到高油大豆、優(yōu)質(zhì)水稻、小麥、玉米、油菜和棉花等6種,初步形成了綜合性收入補貼和生產(chǎn)性補貼相結(jié)合的糧食補貼政策體系f張照新、陳金強。2007)。

然而,現(xiàn)代農(nóng)業(yè)不僅要求糧食生產(chǎn)的穩(wěn)定發(fā)展,更要求農(nóng)業(yè)綜合生產(chǎn)能力的不斷提高,這從根本上說是農(nóng)業(yè)發(fā)展方式轉(zhuǎn)變的任務(wù)?,F(xiàn)代農(nóng)業(yè)的本質(zhì)特點是“高投入、高產(chǎn)出”。其中,高產(chǎn)出是目標,高產(chǎn)出的內(nèi)涵包括產(chǎn)品的數(shù)量多、質(zhì)量好、農(nóng)民的收入高、農(nóng)村生態(tài)環(huán)境保護得好等。建設(shè)“優(yōu)質(zhì)、高產(chǎn)、高效、生態(tài)、安全”的現(xiàn)代農(nóng)業(yè),是轉(zhuǎn)變農(nóng)業(yè)發(fā)展方式的總體目標(柯炳生,2007;孔祥智、李圣軍,2007)。具體歸結(jié)為5個方面:農(nóng)業(yè)發(fā)展由主要依靠投入要素增加向主要依靠生產(chǎn)效率提高轉(zhuǎn)變:農(nóng)業(yè)生產(chǎn)的目標由單純追求數(shù)量向數(shù)量、質(zhì)量、安全、生態(tài)和效益并重轉(zhuǎn)變:主要依靠傳統(tǒng)技術(shù)向傳統(tǒng)技術(shù)與現(xiàn)代技術(shù)相結(jié)合轉(zhuǎn)變:以勞動密集型為主向勞動密集、資本密集和知識密集相結(jié)合轉(zhuǎn)變;由對資源的過度利用向可持續(xù)發(fā)展轉(zhuǎn)變。

由于生產(chǎn)條件等方面的差異,農(nóng)業(yè)中各行業(yè)的增長方式轉(zhuǎn)變面臨的關(guān)鍵問題也存在一定差別,而現(xiàn)行的財政支農(nóng)專項政策并未充分關(guān)注這些關(guān)鍵問題。因此,對各行業(yè)的關(guān)鍵問題和財政支農(nóng)專項政策進行梳理分類和系統(tǒng)分析,以便有針對性地完善財政支農(nóng)專項政策,對實現(xiàn)農(nóng)業(yè)發(fā)展方式的有效轉(zhuǎn)變具有重要意義。

二、財政支農(nóng)專項政策系統(tǒng)分類

財政支農(nóng)專項政策是農(nóng)業(yè)發(fā)展方式轉(zhuǎn)變的重要保障,但是,當前政策在發(fā)揮其積極作用的同時,也反映出一些問題:財政支農(nóng)專項政策未能完全匹配種植業(yè)、畜牧業(yè)和水產(chǎn)業(yè)所面臨的關(guān)鍵問題,某些亟待完善的環(huán)節(jié)尚未得到政策的充分關(guān)注。

轉(zhuǎn)變農(nóng)業(yè)發(fā)展方式旨在提高生產(chǎn)要素的利用率、優(yōu)化生產(chǎn)結(jié)構(gòu)、提高科技含量、健全生產(chǎn)組織方式以及完善社會化服務(wù)體系。因此,財政支農(nóng)專項政策將按照生產(chǎn)要素、生產(chǎn)結(jié)構(gòu)、科技進步、生產(chǎn)組織方式以及社會化服務(wù)五大類進行細分。

(一)種植業(yè)財政支農(nóng)專項政策

種植業(yè)財政支農(nóng)專項政策總體上涉及面較廣,生產(chǎn)要素、生產(chǎn)結(jié)構(gòu)、科技進步、生產(chǎn)組織方式以及社會化服務(wù)均有針對性的財政政策。但是,財政支農(nóng)專項政策的傾斜性明顯,生產(chǎn)要素方面政策相對更全面,而生產(chǎn)結(jié)構(gòu)、生產(chǎn)組織方式等方面有待完善。

1 生產(chǎn)要素方面。種植業(yè)生產(chǎn)要素方面的財政支農(nóng)專項政策比較全面,涉及到種子、農(nóng)藥、化肥、機械、灌溉等。種子方面有“農(nóng)作物良種推廣項目(不含水稻)”、“水稻良種推廣補貼”和“種子工程”;農(nóng)藥方面有“高毒農(nóng)藥替代試驗示范項目”:化肥方面有“測土配方施肥補貼(試點)”;機械方面有“農(nóng)業(yè)機械購置補貼”;灌溉方面有“膜下滴灌設(shè)備補助(試點)”;此外,還有土地方面的“土壤有機質(zhì)提升試點補貼項目”、病蟲防治方面的“農(nóng)作物病蟲害防治補助”等。生產(chǎn)要素方面的財政支農(nóng)專項政策得到了高度的重視,政策涉及到種植業(yè)生產(chǎn)要素投入的多個方面,而且支持對象涵蓋了農(nóng)民、相關(guān)企業(yè)、農(nóng)業(yè)技術(shù)推廣部門以及農(nóng)業(yè)管理部門。

2 生產(chǎn)結(jié)構(gòu)方面。種植業(yè)生產(chǎn)結(jié)構(gòu)方面的財政支持政策集中在產(chǎn)品結(jié)構(gòu)上,即通過新品種推廣和應(yīng)用來優(yōu)化生產(chǎn)結(jié)構(gòu)。主要政策有“優(yōu)勢農(nóng)產(chǎn)品新品種推廣項目”、“優(yōu)勢農(nóng)產(chǎn)品重點技術(shù)推廣項目”以及“農(nóng)作物品種區(qū)域試驗項目”等。生產(chǎn)結(jié)構(gòu)方面的財政支持政策并未進行有效的細分,一項政策基本上囊括了所有的農(nóng)作物,如“優(yōu)勢農(nóng)產(chǎn)品新品種推廣項目”涉及了水稻、小麥、玉米、大豆、棉花等主要的農(nóng)作物,這將導(dǎo)致重點不突出、針對性不強,從而限制種植業(yè)生產(chǎn)結(jié)構(gòu)的優(yōu)化效率。另一方面,生產(chǎn)結(jié)構(gòu)方面的財政支持政策未對產(chǎn)品區(qū)域結(jié)構(gòu)予以充分重視。僅有“農(nóng)作物品種區(qū)域試驗項目”涉及到區(qū)域結(jié)構(gòu)問題,但仍然處于試驗階段。

3 科技進步方面。種植業(yè)科技進步方面的財政支持政策既考慮到了整體推進,又突出了重點領(lǐng)域?!稗r(nóng)業(yè)科技跨越計劃項目”旨在用于水稻、小麥、棉花等生產(chǎn)技術(shù)的集成示范。從整體上推進種植業(yè)的科技進步。而“超級稻新品種選育與示范項目”和“蘋果套袋關(guān)鍵技術(shù)示范補貼項目”分別關(guān)注了水稻和蘋果兩個重點領(lǐng)域。此外,從農(nóng)民的角度推進科技進步也得到重視,如“農(nóng)業(yè)科技入戶項目”、“農(nóng)民科技示范場項目”等,但是,這些財政支持政策并非僅僅針對種植業(yè),而涉及到整個農(nóng)業(yè)。

4 生產(chǎn)組織方式方面。種植業(yè)生產(chǎn)組織方式方面的財政支持政策基本以整體農(nóng)業(yè)為出發(fā)點,而且支持對象以農(nóng)業(yè)企業(yè)為主,對一般農(nóng)戶的關(guān)注不夠。“農(nóng)業(yè)標準化實施示范項目”、“農(nóng)民專業(yè)合作組織示范項目”以及“農(nóng)業(yè)產(chǎn)業(yè)化專項資金項目”旨在改善農(nóng)業(yè)生產(chǎn)組織方式,但針對的是整個農(nóng)業(yè),并非集中關(guān)注種植業(yè)。完全以種植業(yè)生產(chǎn)組織方式轉(zhuǎn)變?yōu)槟康牡呢斦С终呱婕暗健氨Wo性耕作項目”和“優(yōu)勢農(nóng)產(chǎn)品重大技術(shù)推廣旱作節(jié)水項目”,分別考慮了耕地和水資源利用問題,涉及面較窄。另一方面,生產(chǎn)組織方式方面的政策支持對象以農(nóng)業(yè)龍頭企業(yè)、專業(yè)合作組織等為主,對一般的分散農(nóng)戶考慮較少。

5 社會化服務(wù)方面。種植業(yè)社會化服務(wù)方面的財政支持政策仍然缺乏針對性,基本立足于整個農(nóng)業(yè)。完全考慮種植業(yè)社會化服務(wù)的政策僅有“農(nóng)作物種質(zhì)資源保護項目”,其他的相關(guān)政策主要表現(xiàn)在農(nóng)村勞動力轉(zhuǎn)移、農(nóng)業(yè)生態(tài)環(huán)境、農(nóng)產(chǎn)品質(zhì)量安全以及農(nóng)業(yè)信息等方面,這些對于種植業(yè)的增長方式轉(zhuǎn)變均具有重要意義,但為了保證較高的政策效率,有必要根據(jù)具體行業(yè)對其進行細分。

(二)畜牧業(yè)財政支農(nóng)專項政策

畜牧業(yè)財政支農(nóng)專項政策總體上比較零散、缺乏系統(tǒng)性。財政支農(nóng)專項政策主要集中在生產(chǎn)要素和社會化服務(wù)方面,而生產(chǎn)結(jié)構(gòu)、科技進步和生產(chǎn)組織方

式等方面的支持政策相對較少,且針對性不強。

畜牧業(yè)生產(chǎn)要素方面的財政支持政策突出表現(xiàn)在良種補貼上,如“奶牛良種補貼試點項目”、“畜禽良種補貼項目”,補貼對象涉及到畜牧業(yè)農(nóng)戶和良種工作站。其他生產(chǎn)要素方面的財政支持政策較少,僅有2003年畜牧病疫防治的“炭疽病快速診斷項目”。

畜牧業(yè)生產(chǎn)結(jié)構(gòu)方面的財政支農(nóng)專項政策幾乎空白。盡管奶牛和畜禽的良種補貼項目能夠一定程度帶動畜牧業(yè)產(chǎn)品結(jié)構(gòu)的優(yōu)化,但是,增長方式的根本轉(zhuǎn)變必須要求高度優(yōu)化的生產(chǎn)結(jié)構(gòu),這需要針對性較強的財政政策支持。

畜牧業(yè)科技進步方面的財政支農(nóng)專項政策同樣缺乏系統(tǒng)性?!靶滦娃r(nóng)民科技培訓(xùn)補助”和“農(nóng)業(yè)科技入戶項目”并未有針對性地考慮畜牧業(yè)農(nóng)戶,而“農(nóng)民科技示范場項目”也未將種植業(yè)和養(yǎng)殖業(yè)農(nóng)戶系統(tǒng)歸類。畜牧業(yè)科技進步方面的財政支農(nóng)專項政策比較零散,缺乏針對性。

畜牧業(yè)生產(chǎn)組織方式方面的財政支農(nóng)專項政策開始突出重點。2006年開始實施的“標準化畜禽養(yǎng)殖小區(qū)試點”對轉(zhuǎn)變粗放的畜牧業(yè)生產(chǎn)方式具有重要意義,當然,該項措施仍處于試點期,財政支農(nóng)專項政策需要盡快完善。其他方面政策,如“農(nóng)業(yè)產(chǎn)業(yè)化專項資金項目”和“農(nóng)民專業(yè)合作組織示范項目”,主要支持對象為畜牧業(yè)龍頭企業(yè),一般分散農(nóng)戶難以得到有力支持。

畜牧業(yè)社會化服務(wù)方面的財政支農(nóng)專項政策集中體現(xiàn)在資源保護上。其中,“畜禽種質(zhì)資源保護項目”和“牧草種質(zhì)資源保護項目”已經(jīng)有4年左右的連續(xù)實施期。其他方面的支持政策,如勞動力轉(zhuǎn)移、農(nóng)業(yè)生態(tài)環(huán)境、農(nóng)產(chǎn)品質(zhì)量安全以及農(nóng)業(yè)信息等沒有專門針對畜牧業(yè)。

(三)水產(chǎn)業(yè)財政支農(nóng)專項政策

水產(chǎn)業(yè)財政支農(nóng)專項政策總體上比較零散,與增長方式轉(zhuǎn)變?nèi)狈Ω叨汝P(guān)聯(lián)性?,F(xiàn)行財政政策的主要支持對象為水產(chǎn)業(yè)管理部門,而較少直接關(guān)注水產(chǎn)業(yè)的農(nóng)戶。

水產(chǎn)業(yè)生產(chǎn)要素方面的財政支持政策僅涉及到疫病防治。2003年和2004年實施了“漁業(yè)病疫防治項目”,其他生產(chǎn)要素方面的支持政策比較缺乏;生產(chǎn)結(jié)構(gòu)方面的財政支持政策僅在2003年實施了“海洋捕撈漁民轉(zhuǎn)產(chǎn)轉(zhuǎn)業(yè)”,通過漁業(yè)勞動力的轉(zhuǎn)移來優(yōu)化生產(chǎn)結(jié)構(gòu),其他的類似政策有待完善;科技進步方面的財政支農(nóng)專項政策同樣比較零散,缺乏針對性;生產(chǎn)組織方式方面實施了“遠洋公海漁業(yè)資源探捕項目”,但支持對象主要為漁業(yè)管理部門和科研院所,對漁民的生產(chǎn)組織方式轉(zhuǎn)變效果不大:社會化服務(wù)方面的財政支農(nóng)專項政策涉及到漁政管理、漁用設(shè)備以及漁業(yè)和種質(zhì)資源保護等,但是,仍然存在著與水產(chǎn)業(yè)增長方式轉(zhuǎn)變關(guān)聯(lián)度不強的問題。

三、完善財政支農(nóng)專項政策的思路和重點探討

(一)財政支農(nóng)專項政策調(diào)整的主要思路和基本原則

通過對各行業(yè)農(nóng)業(yè)發(fā)展方式轉(zhuǎn)變的現(xiàn)狀分析,找到存在的關(guān)鍵問題,明確影響農(nóng)業(yè)發(fā)展方式轉(zhuǎn)變的主要環(huán)節(jié):系統(tǒng)梳理現(xiàn)行的財政支農(nóng)專項政策,明確各行業(yè)財政支農(nóng)專項政策的薄弱環(huán)節(jié)和缺陷之處,了解哪些方面的政策依然空白,哪些方面支持力度不夠,哪些方面支持方向存在偏差等。然后,根據(jù)關(guān)鍵問題和財政支農(nóng)專項政策狀況,確定各行業(yè)財政支農(nóng)專項政策的調(diào)整方向和重點,從而實現(xiàn)增長方式的根本轉(zhuǎn)變。

財政支農(nóng)專項政策的調(diào)整必須遵循全面性、針對性、系統(tǒng)性和連續(xù)性的原則。全面性旨在保證財政支農(nóng)專項政策覆蓋增長方式轉(zhuǎn)變的所有方面,包括生產(chǎn)要素、生產(chǎn)結(jié)構(gòu)、科技進步、生產(chǎn)組織方面以及社會化服務(wù):針對性旨在保證財政支農(nóng)專項政策調(diào)整必須重點解決增長方式轉(zhuǎn)變的關(guān)鍵問題:系統(tǒng)性旨在保證各行業(yè)之間以及行業(yè)內(nèi)部的財政支農(nóng)專項政策互不重疊、相互協(xié)調(diào):連續(xù)性旨在保證各行業(yè)的關(guān)鍵財政支農(nóng)專項政策連貫實施,避免隨意中斷。

(二)種植業(yè)財政支農(nóng)專項政策調(diào)整的重點

種植業(yè)財政支農(nóng)專項政策調(diào)整的重點在于從農(nóng)戶角度優(yōu)化生產(chǎn)結(jié)構(gòu),改變生產(chǎn)組織方式,提高科技進步吸收率,同時,完善生產(chǎn)要素投入和社會化服務(wù)體系。

產(chǎn)品結(jié)構(gòu)和區(qū)域結(jié)構(gòu)趨同化是種植業(yè)存在的關(guān)鍵問題,財政支農(nóng)專項政策調(diào)整必須保證生產(chǎn)結(jié)構(gòu)的優(yōu)化與優(yōu)質(zhì)品種和技術(shù)推廣等相關(guān)政策有效結(jié)合,相互協(xié)調(diào)。支持對象應(yīng)當充分關(guān)注一般農(nóng)戶,從根本上帶動農(nóng)戶調(diào)整生產(chǎn)結(jié)構(gòu)的積極性。分散化經(jīng)營是導(dǎo)致當前粗放的生產(chǎn)方式的主要原因,財政支農(nóng)專項政策調(diào)整需要重點解決種植業(yè)規(guī)模經(jīng)營水平低下問題,而這同樣需要將政策支持對象指向一般的分散農(nóng)戶??萍歼M步方面財政政策調(diào)整重點在于新技術(shù)的吸收問題,必須保證農(nóng)戶在獲得新品種的同時,真正實現(xiàn)創(chuàng)新收益,這要求財政支農(nóng)專項政策覆蓋到整個種植業(yè)產(chǎn)業(yè)鏈。生產(chǎn)要素投入方面的財政政策相對較全面。尤其是優(yōu)質(zhì)品種方面,但在農(nóng)用薄膜、小型農(nóng)機具等方面仍需完善。社會化服務(wù)方面財政政策調(diào)整需要進一步關(guān)注農(nóng)村生態(tài)環(huán)境、農(nóng)戶市場信息包括生產(chǎn)資料市場和農(nóng)產(chǎn)品銷售市場等。

(三)畜牧業(yè)財政支農(nóng)專項政策調(diào)整的重點

畜牧業(yè)財政支農(nóng)專項政策調(diào)整的重點在于有針對性地優(yōu)化生產(chǎn)結(jié)構(gòu),提高科技含量,加強生產(chǎn)要素投入力度,同時進一步推動生產(chǎn)組織方式轉(zhuǎn)變。健全社會化服務(wù)體系。

畜牧業(yè)生產(chǎn)結(jié)構(gòu)方面的財政支農(nóng)專項政策比較缺乏。僅在良種補貼政策上有所涉及。有針對性地優(yōu)化產(chǎn)品結(jié)構(gòu)和區(qū)域結(jié)構(gòu),提高產(chǎn)業(yè)競爭力是財政支農(nóng)專項政策調(diào)整的重點。科技進步方面基本依靠針對整個農(nóng)業(yè)的財政政策,具體針對畜牧業(yè)實施的相關(guān)政策有待完善,尤其是直接面向畜牧業(yè)農(nóng)戶的技術(shù)支撐體系嚴重缺乏。生產(chǎn)要素方面的財政政策基本集中在良種方面,其他重要生產(chǎn)要素如飼料,支持力度不夠,這需要得到政策調(diào)整的充分考慮。生產(chǎn)組織方式方面的政策調(diào)整應(yīng)關(guān)注支持對象上,當前政策支持的基本是畜牧業(yè)龍頭企業(yè)和經(jīng)營規(guī)模較大的農(nóng)戶,而分散的農(nóng)戶缺乏必要的支持。難以轉(zhuǎn)變粗放的生產(chǎn)方式。社會化服務(wù)方面需要重點考慮對農(nóng)戶的生產(chǎn)和銷售指導(dǎo)。

(四)水產(chǎn)業(yè)財政支農(nóng)專項政策調(diào)整的重點

水產(chǎn)業(yè)財政支農(nóng)專項政策調(diào)整的重點在于轉(zhuǎn)變支持對象,加強生產(chǎn)要素投入,提高科技水平,改變傳統(tǒng)的生產(chǎn)方式。同時進一步調(diào)整產(chǎn)業(yè)結(jié)構(gòu)。增強社會化服務(wù)水平。

水產(chǎn)業(yè)財政支農(nóng)專項政策的首要問題在于支持對象上,現(xiàn)行政策主要考慮漁業(yè)管理部門,僅有“海洋捕撈漁民轉(zhuǎn)產(chǎn)轉(zhuǎn)業(yè)”涉及到漁民,政策調(diào)整首先需要轉(zhuǎn)變支持對象,充分考慮水產(chǎn)業(yè)生產(chǎn)者的利益和積極性。生產(chǎn)要素投入的支持力度有限,優(yōu)質(zhì)品種、飼料、養(yǎng)殖設(shè)備等均是財政支持政策可考慮的方向??萍歼M步方面的支持政策應(yīng)關(guān)注農(nóng)戶對養(yǎng)殖技術(shù)的有效應(yīng)用,保證政策具有較強的針對性。生產(chǎn)組織方式方面的支持政策應(yīng)強調(diào)改變傳統(tǒng)落后的養(yǎng)殖方式,“標準化養(yǎng)殖小區(qū)”政策需要惠及到一般的農(nóng)戶。產(chǎn)業(yè)結(jié)構(gòu)優(yōu)化重點從品種多樣化和產(chǎn)業(yè)轉(zhuǎn)移方面給予政策支持。社會化服務(wù)應(yīng)進一步完善資源保護和生態(tài)環(huán)境相關(guān)政策。

參考文獻:

[1]白雪瑞,轉(zhuǎn)變農(nóng)業(yè)增長方式的對策研究[J],學(xué)術(shù)交流,2007,(02):110-113

[2]戴德成,農(nóng)作物品種混雜退化的原因及其預(yù)防措施[J],中國種業(yè),2007,(06):27―28

[3]高健、劉亞娜,海洋漁業(yè)經(jīng)濟組織制度演進路徑的研究[J],農(nóng)業(yè)經(jīng)濟問題,2007,(11):74-78

[4]甘露、馬君、李世柱,規(guī)模化畜禽養(yǎng)殖業(yè)環(huán)境污染問題與防治對策[J],農(nóng)機化研究,2006,(06):22―24

[5]柯炳生,對發(fā)展現(xiàn)代農(nóng)業(yè)中若干問題的認識[J],教學(xué)與研究,2007,(10):5-9

[6]孔祥智、李圣軍,試論我國現(xiàn)代農(nóng)業(yè)的發(fā)展模式[J],教學(xué)與研究,2007,(10):9-13

[7]李瑾、秦富、丁平,從畜牧生產(chǎn)視角剖析我國畝產(chǎn)品質(zhì)量安全問題[J],調(diào)研世界,2007,(04)

[8]農(nóng)業(yè)部漁業(yè)局養(yǎng)殖課題組,我國主要水產(chǎn)養(yǎng)殖方式研究[J],中國水產(chǎn),2006,(02):11―13

[9]孫震、錢和、陳峰,水產(chǎn)品質(zhì)量安全管理問題及對策[J],食品科技,2007,(02):5―7

[10]孫振鈞、孫永明,我國農(nóng)業(yè)廢棄物資源化與農(nóng)特生物質(zhì)能源利用的現(xiàn)狀與發(fā)展[J],中國農(nóng)業(yè)科技導(dǎo)報,2006,(08):6-13

[11]楊理,草原治理――如何進一步完善草原家庭承包制[J],中國農(nóng)村經(jīng)濟,2007,(12):62―67

第2篇:農(nóng)業(yè)預(yù)測方法范文

關(guān)鍵詞:電力負荷 負荷預(yù)測預(yù)測方法

電力系統(tǒng)負荷預(yù)測是電力系統(tǒng)發(fā)電計劃的重要組成部分,也是電力系統(tǒng)經(jīng)濟運行的基礎(chǔ)。在當前電力發(fā)展迅速和供應(yīng)緊張的情況下,合理地進行電力系統(tǒng)規(guī)劃和運行極其重要。

1 電力負荷的構(gòu)成與特點

電力系統(tǒng)負荷一般可以分為城市民用負荷、商業(yè)負荷、農(nóng)村負荷、工業(yè)負荷以及其它負荷等,不同類型的負荷具有不同的特點和規(guī)律。

城市民用負荷主要是城市居民的家用電器,它具有逐年增長的趨勢,以及明顯的季節(jié)性波動特點,而且民用負荷的特點還與居民的日常生活和工作的規(guī)律緊密相關(guān)。

商業(yè)負荷,主要是指商業(yè)部門的照明、空調(diào)、動力等用電負荷,覆蓋面積大,且用電增長平穩(wěn),商業(yè)負荷同樣具有季節(jié)性波動的特性。雖然商業(yè)負荷在電力負荷中所占比重不及工業(yè)負荷和民用負荷,但商業(yè)負荷中高峰時段內(nèi)照明類負荷占用較大部分。此外,商業(yè)部門在節(jié)假日會增加營業(yè)時間,從而成為節(jié)假日中影響電力負荷的重要因素之一。

工業(yè)負荷是指用于工業(yè)生產(chǎn)的用電,一般工業(yè)負荷的比重在用電構(gòu)成中居于首位,它不僅取決于工業(yè)用戶的工作方式(包括設(shè)備利用情況、企業(yè)的工作班制等),而且與各行業(yè)的特點、季節(jié)因素等都有緊密的聯(lián)系,一般情況下負荷是比較恒定的。

農(nóng)村負荷則是指農(nóng)村居民用電和農(nóng)業(yè)生產(chǎn)用電。此類負荷與工業(yè)負荷相比,受氣候、季節(jié)等自然條件的影響很大。這是由農(nóng)業(yè)生產(chǎn)的特點所決定的。農(nóng)業(yè)用電負荷也受農(nóng)作物種類、耕作習(xí)慣的影響,但就電網(wǎng)而言,由于農(nóng)業(yè)用電負荷集中的時間與城市工業(yè)負荷高峰時間有差別,所以對提高電網(wǎng)負荷率有好處。

從以上分析可知,電力負荷的特點是經(jīng)常變化的,不但按時刻變化、按日變、而且按周變、按年變,同時負荷又是以天為單位不斷起伏的,具有較大的周期性,負荷變化是連續(xù)的過程,通常不會出現(xiàn)大的躍變。但電力負荷對季節(jié)、溫度、天氣等是敏感的,不同的季節(jié),不同地區(qū)的氣候,以及溫度的變化都會對負荷造成明顯的影響。電力負荷的特點決定了電力總負荷由以下四部分組成:基本正常負荷分量、天氣敏感負荷分量、特別事件負荷分量和隨機負荷分量。

2 負荷預(yù)測的內(nèi)容與分類

電力系統(tǒng)負荷預(yù)測包括最大負荷功率、負荷電量及負荷曲線的預(yù)測。最大負荷功率預(yù)測對于確定電力系統(tǒng)發(fā)電設(shè)備及輸變電設(shè)備的容量是非常重要的。為了選擇適當?shù)臋C組類型和合理的電源結(jié)構(gòu)以及確定燃料計劃等,還必須預(yù)測負荷及電量。負荷曲線的預(yù)測可為研究電力系統(tǒng)的峰值、抽水蓄能電站的容量以及發(fā)輸電設(shè)備的協(xié)調(diào)運行提供數(shù)據(jù)支持。

負荷預(yù)測根據(jù)目的的不同可以分為超短期、短期、中期和長期:超短期負荷預(yù)測是指未來1h以內(nèi)的負荷預(yù)測,在安全監(jiān)視狀態(tài)下,需要5-10s或1-5min的預(yù)測值,預(yù)防性控制和緊急狀態(tài)處理需要10min至1h的預(yù)測值。短期負荷預(yù)測是指日負荷預(yù)測和周負荷預(yù)測,分別用于安排日調(diào)度計劃和周調(diào)度計劃,包括確定機組起停、水火電協(xié)調(diào)、聯(lián)絡(luò)線交換功率、負荷經(jīng)濟分配、水庫調(diào)度和設(shè)備檢修等,對短期預(yù)測,需充分研究電網(wǎng)負荷變化規(guī)律,分析負荷變化相關(guān)因子,特別是天氣因素、日類型等和短期負荷變化的關(guān)系。中期負荷預(yù)測是指月至年的負荷預(yù)測,主要是確定機組運行方式和設(shè)備大修計劃等。長期負荷預(yù)測是指未來3-5年甚至更長時間段內(nèi)的負荷預(yù)測,主要是電網(wǎng)規(guī)劃部門根據(jù)國民經(jīng)濟的發(fā)展和對電力負荷的需求,所作的電網(wǎng)改造和擴建工作的遠景規(guī)劃。對中、長期負荷預(yù)測,要特別研究國民經(jīng)濟發(fā)展、國家政策等的影響。

3 負荷預(yù)測的基本過程

負荷預(yù)測工作的關(guān)鍵在于收集大量的歷史數(shù)據(jù),建立科學(xué)有效的預(yù)測模型,采用有效的算法,以歷史數(shù)據(jù)為基礎(chǔ),進行大量試驗性研究,總結(jié)經(jīng)驗,不斷修正模型和算法,以真正反映負荷變化規(guī)律。其基本過程如下。

3.1 調(diào)查和選擇歷史負荷資料

調(diào)查和選擇歷史負荷數(shù)據(jù)資料多方面調(diào)查收集資料,包括電力企業(yè)內(nèi)部資料和外部資料,從眾多的資料中挑選出有用的一小部分,即把資料濃縮到最小量。挑選資料時的標準要直接、可靠并且是最新的資料。如果資料的收集和選擇得不好,會直接影響負荷預(yù)測的質(zhì)量。

3.2 歷史負荷資料的整理

歷史資料的整理一般來說,由于預(yù)測的質(zhì)量不會超過所用資料的質(zhì)量,所以要對所收集的與負荷有關(guān)的統(tǒng)計資料進行審核和必要的加工整理,來保證資料的質(zhì)量,從而為保證預(yù)測質(zhì)量打下基礎(chǔ),即要注意資料的完整無缺,數(shù)字準確無誤。反映的都是正常狀態(tài)下的水平,資料中沒有異常的“分離項”,還要注意資料的補缺。并對不可靠的資料加以核實調(diào)整。

3.3 對負荷數(shù)據(jù)的預(yù)處理

對負荷數(shù)據(jù)的預(yù)處理在經(jīng)過初步整理之后,還要對所用資料進行數(shù)據(jù)分析預(yù)處理,即對歷史資料中的異常值的平穩(wěn)化以及缺失數(shù)據(jù)的補遺,針對異常數(shù)據(jù),主要采用水平處理、垂直處理方法。數(shù)據(jù)的水平處理即在進行分析數(shù)據(jù)時,將前后兩個時間的負荷數(shù)據(jù)作為基準,設(shè)定待處理數(shù)據(jù)的最大變動范圍,當待處理數(shù)據(jù)超過這個范圍。就視為不良數(shù)據(jù),采用平均值的方法平穩(wěn)其變化;數(shù)據(jù)的垂直處理即在負荷數(shù)據(jù)預(yù)處理時考慮其24h的小周期,即認為不同日期的同一時刻的負荷應(yīng)該具有相似性,同時刻的負荷值應(yīng)維持在一定的范圍內(nèi),對于超出范圍的不良數(shù)據(jù)修正,為待處理數(shù)據(jù)的最近幾天該時刻的負荷平均值。

3.4 建立負荷預(yù)測模型

負荷預(yù)測模型是統(tǒng)計資料軌跡的概括,預(yù)測模型是多種多樣的,因此,對于具體資料要選擇恰當?shù)念A(yù)測模型,這是負荷預(yù)測過程中至關(guān)重要的一步。當由于模型選擇不當而造成預(yù)測誤差過大時,就需要改換模型,必要時,還可同時采用幾種數(shù)學(xué)模型進行運算,以便對比、選擇。

在選擇適當?shù)念A(yù)測技術(shù)后,建立負荷預(yù)測數(shù)學(xué)模型,進行預(yù)測工作。由于從已掌握的發(fā)展變化規(guī)律,并不能代表將來的變化規(guī)律,所以要對影響預(yù)測對象的新因素進行分析,對預(yù)測模型進行恰當?shù)男拚蟠_定預(yù)測值。

4 電力負荷預(yù)測方法簡介

電力負荷預(yù)測分為經(jīng)典預(yù)測方法和現(xiàn)代預(yù)測方法。

4.1 經(jīng)典預(yù)測方法

4.1.1 指數(shù)平滑法

第3篇:農(nóng)業(yè)預(yù)測方法范文

關(guān)鍵詞:LM-BP網(wǎng)絡(luò);糧食產(chǎn)量;預(yù)測

中圖分類號:S11+4;TP183 文獻標識碼:A 文章編號:0439-8114(2012)23-5479-03

Forecasting Corn Production Based on LM-BP Neural Network

GUO Qing-chun1,3,4,HE Zhen-fang2,4,LI Li3

(1. Teaching Affairs Office, Shaanxi Radio & TV University, Xi’an 710068, China; 2. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China; 3. Institute of Earth Environment Research, Chinese Academy of Sciences, Xi’an 710075, China; 4. Graduate University, Chinese Academy of Sciences, Beijing 100049, China)

Abstract: A corn production porecasting method based on improved LM-BP was proposed. According to measurement and agricultural significance principle, 9 factors of grain-sown area, fertilizer input, effective grain irrigated area, stricken area, rural electricity consumption, total agriculture mechanism power, the population engaged in agriculture, rural residents family productive assets, the average net income of rural households were extracted as the network input; corn production was extracted as the network output. The LM algorithm could minimize the error, and the modeling results were evaluated with the correlation coefficients, relative error, etc. For training sample set, the correlation coefficient between the simulated value and the actual value was 0.996, the average relative error was 0.47%; for testing sample set, the correlation coefficient between the forecasted value and the actual value was 0.994, the average relative error was 0.56%. The results showed that the improved LM-BP model could improve simulation precision and stability of the model. This method is effective and feasible for corn production prediction.

Key words: LM-BP network; corn production; forecast

糧食產(chǎn)量預(yù)測是復(fù)雜的農(nóng)學(xué)和統(tǒng)計學(xué)問題,受自然環(huán)境、政策、資源投入等多因素的影響。國內(nèi)外的相關(guān)研究中,不少學(xué)者構(gòu)建了許多很有價值的理論假說和預(yù)測模型,主要有4類:投入產(chǎn)出模型、遙感技術(shù)預(yù)測模型、氣候生產(chǎn)力模型及多元回歸和因子分析模型,這些模型從不同角度對糧食產(chǎn)量預(yù)測進行了研究[1,2]。但這些模型多數(shù)采用傳統(tǒng)的統(tǒng)計預(yù)測技術(shù),如時間序列統(tǒng)計模型、定性與推斷技術(shù)、因果關(guān)系方法。而糧食產(chǎn)量是受不確定性因素影響的,是一個復(fù)雜的非線性系統(tǒng)。

人工神經(jīng)網(wǎng)絡(luò)具有很強的處理大規(guī)模復(fù)雜非線性系統(tǒng)的能力。近年來,許多學(xué)者已將人工神經(jīng)網(wǎng)絡(luò)成功地應(yīng)用于實際問題的預(yù)測中,取得了令人滿意的結(jié)果[3-12]。為此,采用改進算法的神經(jīng)網(wǎng)絡(luò)建立了糧食產(chǎn)量預(yù)測系統(tǒng),結(jié)果表明,基于改進算法的BP神經(jīng)網(wǎng)絡(luò)預(yù)測模型具有良好的預(yù)測精度、訓(xùn)練時間短、收斂速度快等特點。

1 仿真試驗數(shù)據(jù)

1.1 預(yù)測因子的選擇

根據(jù)能夠計量及具有農(nóng)學(xué)意義的原則,結(jié)合農(nóng)業(yè)專家的意見,通過前期大量的影響因子分析[13-15],選取1994-2009年的糧食總產(chǎn)量為輸出因子,初步選取糧食作物播種面積、化肥施用量、糧食作物有效灌溉面積、受災(zāi)面積、農(nóng)村用電量、農(nóng)業(yè)機械總動力、從事農(nóng)業(yè)的人口、農(nóng)村居民家庭生產(chǎn)性固定資產(chǎn)原值、農(nóng)村居民家庭平均純收入9個因子作為輸入因子構(gòu)筑模型,原始數(shù)據(jù)來源于2010年《中國統(tǒng)計年鑒》。

1.2 網(wǎng)絡(luò)輸入的初始化

為了消除不同因子之間由于量綱和數(shù)值大小的差異而造成的誤差,以及由于輸入數(shù)值過大造成溢出,首先需要對數(shù)據(jù)進行標準化處理,即把輸入數(shù)據(jù)轉(zhuǎn)化為[0,1]或[-1,1]的數(shù)。通過公式y(tǒng)=(x-min(x))/(max(x)-min(x))對糧食產(chǎn)量進行處理,得到了符合網(wǎng)絡(luò)要求的數(shù)據(jù)。減少了識別數(shù)據(jù)的動態(tài)范圍,使預(yù)測成功的可能性得以提高。然后將數(shù)據(jù)分成兩部分:網(wǎng)絡(luò)的訓(xùn)練樣本集(前11年的數(shù)據(jù))和檢測樣本集(后5年的數(shù)據(jù))。

2 預(yù)測仿真模型的建立

BP網(wǎng)絡(luò)是誤差反向傳播(Back Propagation)人工神經(jīng)網(wǎng)絡(luò)的簡稱,是目前計算方法比較成熟、應(yīng)用比較廣泛、效果比較好、模擬生態(tài)經(jīng)濟系統(tǒng)的神經(jīng)網(wǎng)絡(luò)模型,但傳統(tǒng)BP網(wǎng)絡(luò)存在學(xué)習(xí)過程收斂慢,局部極小、魯棒性不好、網(wǎng)絡(luò)性能差等缺點。為了改進算法,引入Levenberg-Marquardt優(yōu)化算法,其基本思路是使其每次迭代不再沿著單一的負梯度方向,而是允許誤差沿著惡化的方向進行搜索,同時通過在最速梯度下降法和高斯-牛頓法之間自適應(yīng)調(diào)整來優(yōu)化網(wǎng)絡(luò)權(quán)值,使網(wǎng)絡(luò)能夠有效收斂,大大提高網(wǎng)絡(luò)的收斂速度和泛化能力,它能夠降低網(wǎng)絡(luò)對誤差曲面局部細節(jié)的敏感性,有效抑制網(wǎng)絡(luò)陷入局部極小。

Levenberg-Marquardt算法實際上是梯度下降法和擬牛頓法的結(jié)合,該算法期望在不計算Hessian矩陣的情況下獲得高階的訓(xùn)練速度,其公式表達為XK+1=XK-[JTJ+μI]-1JTe,其中,JT為雅克比矩陣,e是網(wǎng)絡(luò)誤差向量。如果μ=0的話,就變成采用近似Hessian矩陣的擬牛頓法;如果μ很大,即成為小步長的梯度下降法,由于牛頓法在誤差極小點附近通常能夠收斂得更快更準確,因此算法的目的就是盡快轉(zhuǎn)換為牛頓法。如果某次迭代成功,誤差性能函數(shù)減小,那么就減小μ值,而如果迭代失敗,就增加μ值。如此可以使得誤差性能函數(shù)隨著迭代的進行而下降到極小值。Matlab工具箱提供了Trainlm 函數(shù)Levenberg-Marquardt算法的計算。

網(wǎng)絡(luò)結(jié)構(gòu)的選擇是應(yīng)用BP網(wǎng)絡(luò)成功與否的關(guān)鍵因素之一,一個規(guī)模過大的神經(jīng)網(wǎng)絡(luò)容易造成網(wǎng)絡(luò)容錯性能下降、網(wǎng)絡(luò)結(jié)構(gòu)復(fù)雜、泛化能力較差等缺陷;而規(guī)模過小的神經(jīng)網(wǎng)絡(luò)往往對訓(xùn)練樣本的學(xué)習(xí)較為困難,學(xué)習(xí)過程可能不收斂,影響網(wǎng)絡(luò)的表現(xiàn)能力,降低網(wǎng)絡(luò)應(yīng)用的精度。理論研究表明,只要具有足夠的隱層神經(jīng)元,3層人工神經(jīng)網(wǎng)絡(luò)可以無限地逼近任何時間序列和函數(shù),因此這里采用含有一個隱含層的3層神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)。隱含層神經(jīng)元數(shù)的選擇較為復(fù)雜,它關(guān)系到整個BP網(wǎng)絡(luò)的精確度和學(xué)習(xí)效率,但目前,它的選取尚無一般的指導(dǎo)原則,只能根據(jù)一些經(jīng)驗法則或通過試驗來確定,如Hecht-Nielsen提出的“2N+1”法,由輸入矩陣可以確定輸入層節(jié)點數(shù)為9,根據(jù)“2N+1”這一經(jīng)驗,可確定隱含層節(jié)點數(shù)為19;輸出層節(jié)點數(shù)為1,這樣就構(gòu)成了一個9-19-1的BP神經(jīng)網(wǎng)絡(luò)模型,其中,訓(xùn)練函數(shù)為Trainlm,輸入層到隱含層以及隱含層到輸出層的傳遞函數(shù)分別為Logsig和Purelm,最大訓(xùn)練次數(shù)Epochs為50 000次;訓(xùn)練誤差精度Goal為0.001;訓(xùn)練時間間隔Show為5,學(xué)習(xí)步長Lc為0.5,動量因子Me為0.95,其他參數(shù)均選用缺省值。

3 仿真結(jié)果

取1994-2004年的11個實際產(chǎn)量作為訓(xùn)練樣本集,將2005-2009年的5個實際產(chǎn)量作為預(yù)測效果檢測樣本集。將1994-2004年9個指標的原始數(shù)據(jù)作為BP神經(jīng)網(wǎng)絡(luò)的輸入樣本,糧食產(chǎn)量實際值作為輸出樣本,然后對網(wǎng)絡(luò)進行訓(xùn)練,可得相應(yīng)結(jié)點的權(quán)值與閾值,將2005-2009年9個指標的原始數(shù)據(jù)(檢測樣本)作為網(wǎng)絡(luò)的仿真輸入,得到最終預(yù)測結(jié)果,表1是1994-2009年中國糧食實際產(chǎn)量和神經(jīng)網(wǎng)絡(luò)方法模擬值對比分析結(jié)果。

從表1可以看出,訓(xùn)練樣本集中擬合精度平均相對誤差為0.47%,最大值為2004年的1.13%,模擬值和實際值的相關(guān)系數(shù)為0.996;檢測樣本集中,BP神經(jīng)網(wǎng)絡(luò)預(yù)測模型得到的預(yù)測值和實際值具有較好的擬合效果,平均相對誤差為0.56%,最大相對誤差為1.11%,最小相對誤差僅為0.04%,模擬值和實際值的相關(guān)系數(shù)為0.994;2005-2009年的糧食產(chǎn)量預(yù)測值的相對誤差均較小。這種改進后的方法比較有效,利用該算法獲得的預(yù)測數(shù)據(jù)結(jié)果較好。

總之,由以上分析結(jié)果可以看出,無論是擬合精度還是預(yù)測5個獨立樣本,BP神經(jīng)網(wǎng)絡(luò)模型的精度都比較高。但從預(yù)測結(jié)果也可以看出,BP網(wǎng)絡(luò)模型方法預(yù)測的平均相對誤差為0.56%,平均預(yù)測精度仍有待提高。

4 小結(jié)與討論

針對中國糧食產(chǎn)量預(yù)測問題,將BP神經(jīng)網(wǎng)絡(luò)應(yīng)用于國家糧食安全預(yù)警系統(tǒng)中,采用1994-2004年的中國糧食產(chǎn)量和影響因子的歷史數(shù)據(jù)建立模型,利用2005-2009年的數(shù)據(jù)檢驗?zāi)P?,研究得出以下結(jié)論。

1)由于常規(guī)統(tǒng)計模型難以滿足糧食產(chǎn)量的預(yù)測要求,提出的改進BP算法較好地解決了神經(jīng)網(wǎng)絡(luò)收斂慢和易陷入局部極小值的問題,通過建立預(yù)測模型,運用該改進方法對中國糧食產(chǎn)量進行了預(yù)測,實例證明,運用基于Levenberg-Marquardt算法的改進BP神經(jīng)網(wǎng)絡(luò),無論從訓(xùn)練結(jié)果精度上還是在收斂性能上都表現(xiàn)出較好的效果,說明運用該方法來預(yù)測糧食產(chǎn)量是完全可行的,彌補了傳統(tǒng)BP算法的不足,提高了預(yù)測精度,加快了收斂速度,而且具有很好的外延性。

2)BP神經(jīng)網(wǎng)絡(luò)模型的預(yù)測精度高,預(yù)測值和實際產(chǎn)量的擬合性好。BP神經(jīng)網(wǎng)絡(luò)法允許原始的隨機數(shù)據(jù)或數(shù)據(jù)中含有較多的噪聲,這是它區(qū)別于其他模型的最大優(yōu)勢,因而任何能用傳統(tǒng)的模型分析或統(tǒng)計方法解決的問題,BP神經(jīng)網(wǎng)絡(luò)能處理得更好。在進行糧食產(chǎn)量預(yù)測時,BP神經(jīng)網(wǎng)絡(luò)法是一種非常理想的預(yù)測方法,但是在構(gòu)造神經(jīng)網(wǎng)絡(luò)的預(yù)測模型時,要注意正確選擇影響因素,不要漏掉對預(yù)測對象有重大影響的因素。

由于糧食產(chǎn)量受各種因素的影響,波動性較大,除了受到上述9種因素的影響外,在很大程度上還受國家宏觀政策、作物品種、耕作技術(shù)等因素的影響,如何更全面地將難以量化的因素也納入模型中進行考慮分析,從而不斷地改進預(yù)測模型、提高預(yù)測精度,是需要進一步研究的工作。

參考文獻:

[1] 和文超,師學(xué)義,鄧青云,等.土地利用規(guī)劃修編中糧食產(chǎn)量預(yù)測方法比較[J].農(nóng)業(yè)工程學(xué)報,2011,27(12):348-352.

[2] 周永生,肖玉歡,黃潤生. 基于多元線性回歸的廣西糧食產(chǎn)量預(yù)測[J]. 南方農(nóng)業(yè)學(xué)報,2011,42(9):1165-1167.

[3] 王巧華,文友先.基于BP神經(jīng)網(wǎng)絡(luò)的雞蛋大小分級方法研究[J].湖北農(nóng)業(yè)科學(xué),2005(1):97-99.

[4] 于平福,陸宇明,韋莉萍,等.基于小波廣義回歸神經(jīng)網(wǎng)絡(luò)的糧食產(chǎn)量預(yù)測模型[J].湖北農(nóng)業(yè)科學(xué),2011,50(10):2135-2137.

[5] 李紅平,魏振方,郭衛(wèi)霞.小麥白粉病的數(shù)學(xué)模型預(yù)測[J].湖北農(nóng)業(yè)科學(xué),2011,50(17):3611-3613.

[6] 李 艷,劉 軍.農(nóng)產(chǎn)品價格預(yù)測系統(tǒng)設(shè)計與實現(xiàn)[J].湖北農(nóng)業(yè)科學(xué),2011,50(14):2976-2978.

[7] 黃 華,黎未然.人工神經(jīng)網(wǎng)絡(luò)在柚皮總黃酮提取中的應(yīng)用[J].湖北農(nóng)業(yè)科學(xué),2011,50(10):2088-2091.

[8] 汪東升,李小昱,李 鵬,等.基于小波和神經(jīng)網(wǎng)絡(luò)的柴油機失火故障檢測[J].湖北農(nóng)業(yè)科學(xué),2011,50(15):3181-3183.

[9] 梁 丹,李小昱,李培武,等.近紅外光譜法對食用植物油品種的快速鑒別[J].湖北農(nóng)業(yè)科學(xué),2011,50(16):3383-3385.

[10] 吳澤鑫,李小昱,王 為,等. 基于近紅外光譜的番茄農(nóng)藥殘留無損檢測方法研究[J].湖北農(nóng)業(yè)科學(xué),2010,49(4):961-963.

[11] 章 英.基于收購質(zhì)量的烤煙煙葉無損檢測技術(shù)研究綜述[J].湖北農(nóng)業(yè)科學(xué),2011,50(7):1297-1300.

[12] 李 哲,李干瓊,董曉霞,等.農(nóng)產(chǎn)品市場價格短期預(yù)測研究進展[J]. 湖北農(nóng)業(yè)科學(xué),2011,50(17):3666-3675.

[13] 宰松梅,溫 季,仵 峰,等.基于灰色關(guān)聯(lián)分析的遼寧省糧食產(chǎn)量預(yù)測模型[J].節(jié)水灌溉,2011(5):64-66.

第4篇:農(nóng)業(yè)預(yù)測方法范文

[關(guān)鍵詞]城市電網(wǎng)規(guī)劃;原理;負荷預(yù)測;特點;靜態(tài);動態(tài)

中圖分類號:TM715 文獻標識碼:A 文章編號:1009-914X(2014)18-0310-01

空間負荷預(yù)測概念最早是由美國的Willis提出并完善的。其定義為在未來電力部門的供電范圍內(nèi),根據(jù)規(guī)劃的城市電網(wǎng)電壓水平不同,將城市用地按照一定的原則劃分成相應(yīng)大小的規(guī)則(網(wǎng)格)或不規(guī)則(變電站、饋線供電區(qū)域)的小區(qū)(小到0.1 km2),通過分析、預(yù)測規(guī)劃年城市小區(qū)土地利用的特征和發(fā)展規(guī)律,來進一步預(yù)測相應(yīng)小區(qū)中電力用戶和負荷分布的地理位置、數(shù)量和產(chǎn)生的時間。

空間負荷預(yù)測具有①涉及范圍廣②不定性強③預(yù)測方法和思路沒有統(tǒng)一標準④影響因素等特點,導(dǎo)致空間負荷預(yù)測的準確性具有很大的難度。本文對負荷預(yù)測的原理、方法和特點方面進行全面剖析,特別是方法和特點進行論述。

一、負荷預(yù)測的原理

1.1 連續(xù)性原理

連續(xù)性原理也可以稱之為持續(xù)性原理,電力負荷的發(fā)展是一個不停歇的連續(xù)過程,在未來電力負荷發(fā)展中的規(guī)律就是延續(xù)這個的整個過程,這是進行符合預(yù)測的關(guān)鍵性因素。

1.2 可知性原理

在配電網(wǎng)符合發(fā)展中電力負荷可以被看做是可以預(yù)測的對象,有史以來,電力負荷預(yù)測的發(fā)現(xiàn)規(guī)律和發(fā)展現(xiàn)狀都可以被人們掌握,我們可以根據(jù)電力負荷最近的發(fā)展規(guī)律和現(xiàn)狀進行對未來的預(yù)測。

1.3 可知性原理

電力負荷不是一成不變的,電力負荷可以隨著多種因素進行不同的變換,所以,電力負荷預(yù)測的依據(jù)就是根據(jù)不同的因素制定不同的預(yù)測方案。

1.4 反饋性原理

所謂的反饋定原理指的是電力負荷輸出后的信號又一次被輸送到輸入端,從而調(diào)節(jié)輸出結(jié)果。針對電力負荷預(yù)測而言,進行預(yù)測的結(jié)果和實際運行的數(shù)據(jù)是不同的,也是存在差距的,我們可以運用差距對負荷預(yù)測模型進行有效的調(diào)整,通過實際檢驗提升負荷預(yù)測的準確度。

1.5 相似性原理

所謂的相似性原理是在一般情況下,電力負荷發(fā)展現(xiàn)狀和過程很有可能和另一種事物的過程一樣,我們可以根據(jù)另外事物的發(fā)展過程預(yù)測電力負荷未來的發(fā)展狀況。

二、負荷預(yù)測的方法及特點

隨著科技生產(chǎn)力的快速發(fā)展,負荷預(yù)測的技術(shù)水平也逐步提高,預(yù)測方法日益完善。根據(jù)負荷預(yù)測的技術(shù),將負荷預(yù)測方法分為兩類:空間靜態(tài)類和時間動態(tài)類,下面對預(yù)測方法進行具體介紹。

2.1 空間靜態(tài)類

空間靜態(tài)類預(yù)測,是指根據(jù)某個被測量的基本特點,列出待測方程,同時通過計算未來某特定時刻的數(shù)值得到預(yù)測值??臻g靜態(tài)類的預(yù)測方法主要包括以下幾種。

2.1.1 用電單耗法

用電單耗法,是指按照用電單耗和產(chǎn)品數(shù)量計算耗電量,是工業(yè)用電和農(nóng)業(yè)用電的行之有效的預(yù)測方法重要方法,比較適應(yīng)于近、中期規(guī)劃。在具體的計算預(yù)測過程中,可根據(jù)之前每年的產(chǎn)業(yè)產(chǎn)值及用電量得到產(chǎn)值單耗,同時根據(jù)產(chǎn)值的發(fā)展趨勢得到單耗遞變率,通常情況下,由于國家經(jīng)濟的發(fā)展和產(chǎn)業(yè)機構(gòu)的調(diào)整,產(chǎn)值單耗量有下降的趨勢。例如:若某產(chǎn)業(yè)值按照遞減率C下降,則計劃預(yù)測未來m年后的耗電量Am如下所示:

Am=GmQo(1+C)n (1)

上式中,Am是指第m年的需電量,Gm是指第m年的產(chǎn)值;Qo是指基準年的產(chǎn)值單耗;C是指產(chǎn)業(yè)值的遞減率。用電單耗法的特點:全面考慮了各種因素對電力負荷的影響,如果數(shù)據(jù)準確,則負荷預(yù)測會有較高的精度;由于涉及因素多,因此需要進行大量的前期調(diào)查和數(shù)據(jù)統(tǒng)計,工作量巨大。比較適合近、中期的負荷預(yù)測。

2.1.2 人均電量指標換算法

人均電量指標換算法,是指選取與配網(wǎng)區(qū)域類似的國外地區(qū)為比較對象,將兩地區(qū)的過去及目前的人均電量指標進行比較分析,推算出本地區(qū)的人均電量預(yù)測值,在根據(jù)本區(qū)域的人口預(yù)測分析得到總需電量的預(yù)測值。計算公式如下式:

Am=gmKm (2)

上式中,Am是指該區(qū)域第m年的預(yù)測需電量;gm是指該區(qū)域第m年的人居用電值;Km是指該區(qū)域第m年的人口數(shù)量。人均電量指標換算法的特點:此種預(yù)測方法快捷方便,計算簡單。但是對于人口數(shù)量的預(yù)測精確度依賴性較高,因而負荷預(yù)測精度不高,比較適合于中、長期的預(yù)測。

2.1.3 最大負荷利用小時法

最大負荷利用小時法,是指預(yù)測出某年的需電量后,根據(jù)負荷發(fā)展的規(guī)律,依據(jù)慣性趨勢變化預(yù)測年最大負荷。具體預(yù)測公式如下式所示。

(3)

上式中,Pn.max是指某年的最大負荷;An是指某年的需用電量;Tmax是指某年的最大負荷利用小時數(shù),其值可以根據(jù)歷年的資料及未來用電結(jié)構(gòu)的變化來確定。通常情況下,隨著產(chǎn)業(yè)結(jié)構(gòu)的調(diào)整,Tmax的值逐漸減小。最大負荷利用小時法的特點:此種預(yù)測方法快捷方便,計算簡單。但是對于指標值的把握相對困難,對于電量的預(yù)測精度有較高的要求。

2.2 時間動態(tài)類

時間動態(tài)類預(yù)測,是指不考慮負荷預(yù)測的決定因素和變量結(jié)構(gòu),僅根據(jù)負荷的歷史數(shù)據(jù)及發(fā)展規(guī)律預(yù)測未來負荷的狀態(tài)。時間動態(tài)類的預(yù)測方法主要包括以下兩種。

2.2.1 趨勢外推法

電力負荷的變化具有以下兩個特點:第一,當滿足某種條件時,有明顯的變化趨勢;第二,存在著較大的不確定性,例如:四季的變化、意外事故的出現(xiàn)等都會對電力負荷帶來一定的隨機性干擾。例如:對于農(nóng)業(yè)用電來說,在冬季,用電量比較穩(wěn)定,變化趨勢比較平穩(wěn);但是在別的時段,變化趨勢又會呈現(xiàn)線性和非線性。通常情況下,為了找到發(fā)展變化的規(guī)律,采用描散點圖的方法確定變化趨勢的類型,根據(jù)確定的變化趨勢就預(yù)測未來負荷的情況,這就是趨勢外推預(yù)測法。這種方法主要有下述幾種特征趨勢:水平趨勢預(yù)測技術(shù)、線性趨勢預(yù)測技術(shù)、多項式預(yù)測技術(shù)、季節(jié)性預(yù)測技術(shù)及增長趨勢預(yù)測技術(shù)等。趨勢外推法的特點:此種預(yù)測方法只需要以歷史數(shù)據(jù)為基礎(chǔ),需要數(shù)據(jù)量少;但是如果電力負荷出現(xiàn)變動,就會出現(xiàn)較大的誤差。僅適合用于對短、中期負荷的預(yù)測。

2.2.2 回歸分析法

回歸分析法,是通過分析探究自變量和因變量兩者的關(guān)系,推導(dǎo)出回歸方程式,通常包括線性和非線性兩種。對于方程中未知量的確定,常用最小二乘法;對于部分非線性方程函數(shù),可以采用三段和值法、模型參數(shù)法等確定參數(shù)。通常常用的回歸分析模型有以下幾種:

拋物線模型:y=a+bx+cx2

雙曲線模型:

非線性指數(shù)模型:y=a+becx

時間序列1模型:y=a0+a1xa2x

線性模型:y=a+bx

對數(shù)模型:y=a+b1nx

冪函數(shù)模型:y=axb

回歸分析法特點:此種預(yù)測方法測過程簡單方便,參數(shù)估計技術(shù)相對成熟,但是預(yù)測精度比較低,開銷較大。尤其是非線性回歸預(yù)測,過程相當復(fù)雜。僅適合中期負荷預(yù)測。

三、結(jié)束語

綜上所述,負荷預(yù)測方法種類多,但是由于各種方法都存在著自身特點和不確定性。為了保證負荷預(yù)測的精確性,可以將多種不同預(yù)測方法的結(jié)果進行相互驗證和補充,以最大限度的降低負荷預(yù)測的不準確性。

參考文獻

[1]孫旭,任震. 空間負荷預(yù)測在城市電網(wǎng)規(guī)劃中的應(yīng)用[J]. 繼電器,2005,14:79-81.

[2]王穎,彭澎. 考慮不確定性的城市電網(wǎng)空間負荷預(yù)測方法[J]. 電力科學(xué)與工程,2009,02:24-26.

第5篇:農(nóng)業(yè)預(yù)測方法范文

之所以要提出災(zāi)害損失的需求問題,是因為災(zāi)害的損失預(yù)測在實際的預(yù)測中存在著很多的困難。

2農(nóng)業(yè)保險災(zāi)害損失常用的預(yù)估方法

以往對于災(zāi)害的損失沒有一個很好的科學(xué)預(yù)測方法,農(nóng)險部對于承保都是根據(jù)經(jīng)驗進行核保,往往會造成投保的風(fēng)險增大。常用的災(zāi)害預(yù)測方法一般可概括為五個步驟,分別是:災(zāi)害統(tǒng)計、建立災(zāi)害序列、建立預(yù)測模型、災(zāi)害變動預(yù)測、模型精度檢驗等。其中建立災(zāi)害預(yù)測模型是災(zāi)害預(yù)測的核心。由于自然災(zāi)害受多種因素影響,傳統(tǒng)的自然災(zāi)害預(yù)測模型幾乎都是基于最小二乘法的單一預(yù)測模型。

3ε-SVR的介紹

SVM回歸問題是給定的數(shù)據(jù)樣本集合為{)(,,....,(,)iillxyxy}。其中,niix∈Ry∈R,i=1,2,3....l。這里的iy并不限定取-1或1,而是可取任意實數(shù)?;貧w問題就是要給定一個新的輸入樣本x,根據(jù)給定的數(shù)據(jù)樣本推斷它所對應(yīng)的輸出y是多少,這個輸出y是一個實數(shù),用數(shù)學(xué)語言可以把回歸問題描述如下:給定的數(shù)據(jù)樣本集合為{)(,,....,(,)iillxyxy}。其中,niix∈Ry∈R,i=1,2,3....l。尋找nR上的一個函數(shù)f(x),一邊用y=f(x)來推斷任一輸入x所對應(yīng)的y值。下面介紹線性支持向量機回歸的求解過程。首先考慮線性回歸。設(shè)數(shù)據(jù)樣本為n維向量,某區(qū)域的l個數(shù)據(jù)樣本及其值的表示為:(,),(,)niillxyxy∈R×R(4-1)線性函數(shù)設(shè)為f(x)=w•x+b(4-2)優(yōu)化問題即最小化:**11)()2liiiRwwwC=(,ε,ε=•+∑ε+ε(4-3)約束條件為*(),1,2,,iiifx−y≤ε+iε=l(4-4)(),1,2,,iiifx−y≤ε+iε=l(4-5)*,0,1,2,,iiεε≥i=l(4-6)式(4-3)中第一項使函數(shù)更為平坦,從而提高了泛化能力,第二項為減小誤差,常數(shù)C對兩者做出折中。ε為一正數(shù)。f(xi)與yi的差別小于ε時不計入誤差,大于ε時誤差計為|f(xi)−yi|−ε。這也是一個凸二次優(yōu)化問題,引入拉格朗函數(shù):****11***11(,,,,,)1()[()]2[()]()lliiiiiiiilliiiiiiiiiiLwbwwCyfxyfx====εεα,αγ,γ=•+ε+ε−αε+ε−+−αε+ε+−−εγ−εγ∑∑∑∑其中,**0;0;1,2,,iiiiα,α≥γ,γ≥i=l。函數(shù)L應(yīng)對*,,,iiwbεε最小化,對**iiiiα,α,γ,γ最大化。函數(shù)L的極值應(yīng)滿足條件:*0,0,0,0iiLLLLb∂∂∂∂====∂ω∂∂ε∂ε(4-8)從而得到:*1)0liii=∑(α−α=*1)liiiiwx==∑(α−α(4-10)0,1,2,,iiC−α−γ=i=l(4-11)**0,1,2,,iiC−α−γ=i=l(4-12)將式(4-9)~式(4-12)代入式(4-7)中,可以得到優(yōu)化問題的對偶形式,最大化函數(shù):****,11*11(,)()()()()2()lliijjijiiiijiliiiWaxxy===α=−α−αα−α•+α−α−α+αε∑∑∑其約束為:*1()liiiiwx==∑α−α(4-14)*0,,1,2,,ii≤αα≤Ci=l(4-15)這也是一個二次優(yōu)化問題,w可由式(4-8)得到,b可由約束條件[()1]0iiiαyw•x+b−=求解得到。

4農(nóng)業(yè)保險災(zāi)害損失的實例分析

在本課題中,通過調(diào)查安慶分支公司承保在在2004-2009年的歷史受災(zāi)概率數(shù)據(jù)如表1所示。為了便于計算及減少誤差,我們對實際的概率數(shù)做了人工干預(yù)處理,即實際概率應(yīng)為表中的實際數(shù)除以40%,例如實際數(shù)為6,則實際受災(zāi)概率應(yīng)為0.15。并對處理后的概率數(shù)采用極值變換法對進行歸一化處理。即可以表示為:minmaxminttXXYXX−=−,其中tX代表實際的賠付率,maxX,minX分別代表歷史數(shù)據(jù)中賠付率的最大值和最小值,tY代表歸一化處理后的量。當然本文所用的算法還有很多值得去深入研究的地方,例如,在災(zāi)害損失的影響因素方面要更加緊密的結(jié)合實際,所選的因素都要是對發(fā)生災(zāi)害有著一定的影響,這樣就能得出更加精確的量化值,另外,在參數(shù)值的量化方面也可以用一些優(yōu)化算法進行優(yōu)化,歷史數(shù)據(jù)收集更多,也可以使預(yù)測的結(jié)果更為準確。作者簡介:駱國剛,1976年生,男,碩士,實驗師,研究方向:信息化、管理科學(xué)與工程。

作者:駱國剛 單位:安徽工業(yè)大學(xué)

參考文獻

[1]白鵬,張喜斌等.支持向量機理論及工程應(yīng)用實例[M].西安:西安電子科技大學(xué)出版社,2008.

第6篇:農(nóng)業(yè)預(yù)測方法范文

關(guān)鍵詞:多元線性回歸;糧食產(chǎn)量;預(yù)測

糧食的生產(chǎn)和安全是全球最關(guān)注的問題之一,俗話說“民以食為天”,我國從古至今都非常重視糧食問題,一直將糧食的生產(chǎn)放在國民經(jīng)濟的首位。但是中國糧食的生產(chǎn)也面臨很多不利因素,如環(huán)境的污染以及房地產(chǎn)行業(yè)的迅速崛起,使得耕地面積逐漸減少,加上我國人口的不斷增長以及自然災(zāi)害的等因素的影響,糧食問題值得我們積極關(guān)注。本文主要從《中國統(tǒng)計年鑒》,選取2000-2015年間糧食總產(chǎn)量、糧食播種面積、有效灌溉面積、農(nóng)業(yè)機械總動力、農(nóng)業(yè)化肥施用量、受災(zāi)面積相關(guān)數(shù)據(jù),建立糧食產(chǎn)量與各因素之間的多元線性回歸模型,然后應(yīng)用該方程對糧食產(chǎn)量做預(yù)測。

1 建立模型

建立全國糧食總產(chǎn)量與各影響因素之間的多元回歸模型如下:

其中,Y為糧食產(chǎn)量,x1、x2、x3、x4、x5分別為糧食播種面積、有效灌溉面積、農(nóng)業(yè)機械總動力、農(nóng)業(yè)化肥施用量、受災(zāi)面積。?茁0、?茁1、?茁2、?茁3、?茁4、?茁5為回歸系數(shù),?滋為隨機誤差。

2 模型的求解與檢驗

從《中國統(tǒng)計年鑒》中收集糧食產(chǎn)量(Y)、糧食播種面積(x1)、有效灌溉面積(x2)、農(nóng)業(yè)機械總動力(x3)、農(nóng)業(yè)化肥施用量(x4)、受災(zāi)面積(x5)的數(shù)據(jù)見表1:

將糧食產(chǎn)量(Y)作為因變量、糧食播種面積(x1)、有效灌溉面積(x2)、農(nóng)業(yè)機械總動力(x3)、農(nóng)業(yè)化肥施用量(x4)、受災(zāi)面積(x5)作為自變量,借助Eviews7.2軟件計算,結(jié)果如圖1。

(1)R2檢驗

由以上的Y果知,判定系數(shù)R2=0.993488,修訂的判定系數(shù)R2=0.990232接近于1,說明全國的糧食產(chǎn)量與糧食播種面積(x1)、有效灌溉面積(x2)、農(nóng)業(yè)機械總動力(x3)、農(nóng)業(yè)化肥施用量(x4)、受災(zāi)面積(x5)之間有較強的線性相關(guān)性,擬合程度較高。

(2)統(tǒng)計檢驗

統(tǒng)計量F=305.1364,取顯著性水平?琢=0.05時,查F分布表知,F(xiàn)的臨界值為F0.05(4,10)=3.48

(3)t檢驗

從回歸系數(shù)分析的結(jié)果可得t(■1)=2.830213,t(■2)=2.621197,t(■3)=-1.348612,t(■4)=1.862353,t(■5)=-2.604057。取顯著性水平?琢=0.05時,由t分布表可知,t0.025(5)=2.228 顯然:|t(■1)|>t0.025(5),|t(■2)|>t0.025(5),|t(■3)|>t0.025(5),|t(■4)|>t0.025(5),|t(■5)|>t0.025(5)。因此x1、x2、x5通過了顯著性檢驗,x3、x4沒有通過t檢驗。說明糧食播種面積(x1)、有效灌溉面積(x2)、受災(zāi)面積(x5)有顯著性影響。

上述的回歸模型中,農(nóng)業(yè)機械總動力(x3)的回歸系數(shù)■3=-0.323815,說明在其他條件不變的情況下,農(nóng)業(yè)機械總動力每增加1萬千瓦,糧食產(chǎn)量下降0.323815萬噸,這顯然不合理。而農(nóng)業(yè)化肥施用量(x4)在上述的回歸模型中的系數(shù)又沒通過t檢驗。為確定最優(yōu)的線性回歸預(yù)測方程,考慮剔除自變量x3、x4,再做Y關(guān)于x1、x2、x5的修正線性回歸分析,用Eviews7.2軟件運行計算,所得結(jié)果圖2。

(1)R2檢驗

由以上的結(jié)果知,判定系數(shù)R2=0.988503,說明說明全國的糧食產(chǎn)量與糧食播種面積(x1)、有效灌溉面積(x2)、受災(zāi)面積(x5)之間有較強的線性相關(guān)性,擬合程度較高。

(2)F統(tǒng)計檢驗

統(tǒng)計量F=343.9049,取顯著性水平?琢=0.05時,查F分布表知,F(xiàn)的臨界值為F0.05(2,12)=3.89

(3)t檢驗

從回歸系數(shù)分析的結(jié)果可得

t(■1)=2.685860,t(■2)=10.30333,t(■5)=-3.602551

取顯著性水平?琢=0.05時,查t分布表知,t的臨界值為t0.025(12)=2.179

x1、x2、x5通過了顯著性檢驗,說明糧食播種面積(x1)、有效灌溉面積(x2)、受災(zāi)面積(x5)有顯著性影響。綜上,剔除自變量x3、x4修正后的對糧食產(chǎn)量的回歸預(yù)測方程為:

Y=0.271549x1+1.112721x2-0.65722x5-29578.90

為了驗證上述模型的有效性,對2000-2015年糧食產(chǎn)量的實際值與預(yù)測值進行比較,得到的數(shù)據(jù)如表2所示。

通過比較,得出2000-2015年糧食產(chǎn)量實際值與預(yù)測值的相對誤差不超過0.021,因此,該多元線性回歸模型對糧食產(chǎn)量的預(yù)測具有較好的一致性。

本文運用多元線性回歸的方法,建立了糧食產(chǎn)量與各因素之間的多元線性回歸模型,并對對糧食產(chǎn)量進行了預(yù)測分析,該回歸方程對糧食產(chǎn)量的預(yù)測具有較高的準確度。從多元回歸方程中我們可以得出,糧食播種面積以及灌溉面積是影響糧食產(chǎn)量的主要因素,所以,為使糧食產(chǎn)量的穩(wěn)步增長,一定要保障糧食的播種播種面積同時要加大灌溉設(shè)施的修建,提高農(nóng)作物的灌溉面積。

參考文獻

[1]孫萍,陳悅.影響糧食產(chǎn)量的因素分析及對策建議[J].天津理工大學(xué)學(xué)報,2008,24(5):51-53.

[2]丁晨芳.組合模型分析方法在我國糧食產(chǎn)量預(yù)測中的應(yīng)用[J].農(nóng)業(yè)現(xiàn)代化研

究,2007,28(1):101-103.

第7篇:農(nóng)業(yè)預(yù)測方法范文

關(guān)鍵詞:貴州?。晦r(nóng)業(yè)總產(chǎn)值;ARIMA模型;短期預(yù)測

一、引言

農(nóng)業(yè)總產(chǎn)值反映的是一個國家或地區(qū)農(nóng)業(yè)生產(chǎn)的總規(guī)模和總水平。隨著改革開放的深入,農(nóng)業(yè)問題一直都是我國政府工作的重中之重。時間序列分析是用一段時間的一組屬性數(shù)值發(fā)現(xiàn)模式從而來預(yù)測未來值,ARIMA 模型是較為常用的用來擬合平穩(wěn)序列的預(yù)測模型。

二、ARIMA模型簡介

ARIMA模型全稱為差分自回歸移動平均模型,又被稱為Box-Jenkins模型或博克思-詹金斯法。模型的基本思想是:預(yù)測對象會隨著時間推移而形成的數(shù)據(jù)序列被視為一個隨機序列,用數(shù)學(xué)模型來近似描述這個序列,并認為該序列會按蘊含的規(guī)律遵循下去。這個模型被識別后就可以從時間序列的過去值及現(xiàn)在值進行外推,以此來預(yù)測未來值。而ARIMA模型在實證研究中被研究人員廣泛運用于時間序列分析和模型預(yù)測領(lǐng)域。ARIMA模型研究的對象是平穩(wěn)時間序列,因此對一個離散的時間序列進行建模時,應(yīng)當首先考察其平穩(wěn)性,再分析和判斷時間序列的生成過程。根據(jù)生成機制的不同,ARIMA模型實包含3種類型的模型:

(一)AR模型

AR模型也稱為自回歸模型。它是通過過去的觀測值和現(xiàn)在的干擾值的線性組合預(yù)測, 它是僅用時間序列{Yt}的不同滯后項作為解釋變量的模型,其數(shù)學(xué)形式為:

Yt=?覬1Yt-1+?覬2Yt-2+?覬3Yt-1+......+?覬pYt-p+et

式中:p為自回歸模型的階數(shù);?覬i(i=1,2,......p)為模型的自回歸系數(shù),et為誤差,Yt為一個時間序列。

(二)MA模型

MA模型也稱為移動平均模型。它是通過過去的干擾值和現(xiàn)在的干擾值的線性組合預(yù)測,它是僅用誤差的不同滯后項作為解釋變量的模型,其數(shù)學(xué)形式為:

Yt=et-θ1et-1-θ2et-2-θ3et-3-......-θqet-q

式中:p為模型平均移動階數(shù);θj(j=1,2,......q)為模型的移動平均系數(shù);et為誤差; Yt為觀測值。

(三)ARMA模型

ARMA模型是自回歸模型(AR)和移動平均模型(MA)的組合,構(gòu)成了用于描述平穩(wěn)隨機過程的自回歸滑動平均模型ARMA,數(shù)學(xué)形式為:

Yt=?覬1Yt-1+?覬2Yt-2+?覬3Yt-1+......+?覬pYt-p+et-θ1et-1-θ2et-2-θ3et-3-......-θqet-q

三、ARIMA模型的建立

(一)數(shù)據(jù)的選取

本研究選用貴州省1978年至2010 年農(nóng)業(yè)總產(chǎn)值的統(tǒng)計數(shù)據(jù),數(shù)據(jù)來源于《貴州省統(tǒng)計年鑒》,經(jīng)整理后見表1。

令進出口總額為Xt,根據(jù)貴州省1978年至2010年農(nóng)業(yè)總產(chǎn)值數(shù)據(jù),在Eviews軟件中建立時序圖(見圖1)可以看出,該折線圖是向右上方傾斜的,表明此時間序列存在增長的趨勢。所以貴州省1978年至2010年農(nóng)業(yè)總產(chǎn)值的時間序列數(shù)據(jù)是不穩(wěn)定的。

進一步對該時間序列進行單位根檢驗,從輸出結(jié)果可知ADF檢驗p的值為0.9996,沒有通過檢驗,因此{Xt}序列是非平穩(wěn)的,因此先對數(shù)據(jù)做平穩(wěn)化處理。

(二)數(shù)據(jù)平穩(wěn)化處理

對貴州省1978年至2010年農(nóng)業(yè)總產(chǎn)值時間數(shù)據(jù)取對數(shù)得,并進行二階差分。并對二階差分的數(shù)據(jù)作單位根檢驗。

對貴州省1978年至2010年進農(nóng)業(yè)總產(chǎn)值時間序列數(shù)據(jù)取對數(shù)并進行二階差分后,得到的ADF檢驗p的值為接近零,因此能通過檢驗,拒絕原假設(shè)。對處理后的數(shù)據(jù)作時序圖(見圖2),可知此圖圍繞某條水平線上下波動,數(shù)據(jù)無明顯的上升或下降趨勢,說明處理后的數(shù)據(jù)已經(jīng)是平穩(wěn)的,且d=2。

(三)參數(shù)的估計與模型的定階

對處理后的數(shù)據(jù)作滯后16期的自相關(guān)(autocorrelation function,ACF)圖和偏相關(guān)(partial autocorrelation function,PACF)圖,如圖3。

從該圖可以看到,自相關(guān)函數(shù)在12步后截尾,所以q=12;偏自相關(guān)函數(shù)在12步后截尾,所以p=12。

對模型進行檢驗,由于常數(shù)項C沒有通過顯著性檢驗,即C對模型沒有顯著性影響故舍掉。AR(12)的p值為0.008,MA(12)的p值接近于零,均能通過單個系數(shù)的顯著性檢驗;且擬合優(yōu)度R2=0.827,擬合情況還算是可以的。因此,p=12,q=12,d=2處理后數(shù)據(jù)的模型為。由此得到的估計方程為:

D[D(logXt)]=-0.4353D[D(logXt-12)] -0.9408εt-12+εt①

(四)模型的檢驗

如果殘差序列是白噪聲序列即純隨機序列,則表明所建立的模型包含原序列的所有趨勢,模型用于預(yù)測是合適的。反之,殘差序列不是白噪聲,說明殘差序列中還有某種信息即還有規(guī)律,所建模型不合適,應(yīng)重新建模??梢岳脷埐畹淖韵嚓P(guān)分析圖直觀判斷,其準則是:殘差序列的自相關(guān)與零無顯著不同,或者說基本落入隨機區(qū)間,殘差序列為白噪聲;反之殘差序列不是白噪聲。

由圖4可以看出,所有Q值都小于檢驗水平為0.05的卡方分布臨界值,最后得出結(jié)論:模型的隨機誤差序列是一個白噪聲序列。

建立模型的目的之一是對未來值進行預(yù)測。對未來貴州省農(nóng)業(yè)總產(chǎn)值進行預(yù)測前, 先檢驗?zāi)P偷念A(yù)測能力。模型的預(yù)測能力一般用平均絕對百分比誤差(mean absolute percentage error,)度量, 它的計算公式如下:

MAPE=■·■■×100%

通過計算MAPE=1.106

(五)對貴州省農(nóng)業(yè)總產(chǎn)值的預(yù)測

通過估計方程①對2011年貴州省農(nóng)業(yè)總產(chǎn)值的預(yù)測值為:D[D(logX2011)]=09,925234,經(jīng)計算得出X2011=670.63億元(2011年的實際值為655.30億元),誤差為2.33%。同時預(yù)測貴州省2012年農(nóng)業(yè)總產(chǎn)值為773.85億元。

四、總結(jié)

本文構(gòu)建的貴州省農(nóng)業(yè)總產(chǎn)值自回歸預(yù)測模型,經(jīng)統(tǒng)計檢驗估計方程整體顯著性很好,由此證實了ARIMA模型是一種很好的短期時間序列農(nóng)業(yè)總產(chǎn)值的預(yù)測方法,適用于貴州農(nóng)業(yè)總產(chǎn)值的預(yù)測研究,可以為貴州農(nóng)業(yè)經(jīng)濟發(fā)展規(guī)劃提供決策依據(jù)。

值得注意的是,ARIMA模型的短期預(yù)測效果好,長期預(yù)測效果不好,盡管如此,與其他的預(yù)測方法相比,其預(yù)測的準確度還是比較高的。

參考文獻:

[1]徐國祥,統(tǒng)計預(yù)測與決策(第二版)[M].上海:上海財經(jīng)大學(xué)出版社,2005.

[2]張曉峒.計量經(jīng)濟學(xué)(第三版)[M].天津:南開大學(xué)出版社,2007.

[3]易丹輝.時間序列分析方法與應(yīng)用[M].北京:中國人民大學(xué)出版社,2011.

第8篇:農(nóng)業(yè)預(yù)測方法范文

關(guān)鍵詞:低等級;公路建設(shè);交通量預(yù)測

中圖分類號:X734文獻標識碼: A

引言

交通量預(yù)測是指通過切實可靠的交通調(diào)查,采集到較為準確可靠的交通量數(shù)據(jù),對其進行整理分析,通過專業(yè)的計算,發(fā)現(xiàn)交通量變化的規(guī)律,并結(jié)合其他各種理論性的交通量,如自然增長的趨勢交通量,適路行車條件改善引起的誘增交通量,轉(zhuǎn)移交通量等,推算出研究區(qū)域內(nèi)公路網(wǎng)中各路線和路段上現(xiàn)時和未來的交通量,為區(qū)域內(nèi)公路網(wǎng)規(guī)劃和單項公路的建設(shè)提供最基本的依據(jù)的研究工作。

1、交通量預(yù)測思路與方法

交通運輸與經(jīng)濟社會有著密不可分的聯(lián)系,經(jīng)濟社會的發(fā)展決定著交通運輸?shù)陌l(fā)展,反過來交通運輸也影響著經(jīng)濟社會的發(fā)展速度與水平,交通運輸?shù)陌l(fā)展可以引導(dǎo)和促進社會經(jīng)濟的發(fā)展。因此在進行交通量預(yù)測時,應(yīng)分析經(jīng)濟社會與交通運輸發(fā)展兩者之間的相關(guān)關(guān)系,在對項目影響區(qū)域經(jīng)濟社會發(fā)展調(diào)查的基礎(chǔ)上,對項目影響區(qū)域未來經(jīng)濟社會發(fā)展趨勢與水平進行了分析預(yù)測,進而對項目設(shè)計交通量進行預(yù)測。

常用的交通量預(yù)測方法有多種,本文將通過工程實例介紹回歸分析法和彈性系數(shù)法在交通量預(yù)測中的應(yīng)用。

1.1、回歸預(yù)測法

回歸預(yù)測法是以相關(guān)原理揭示因果關(guān)系的一種常用技術(shù),其原理是根據(jù)已知的n組數(shù)據(jù)(Xi,Yi)來尋求它們之間函數(shù)關(guān)系的最佳表達式或最佳擬合曲線。交通量預(yù)測常采用的回歸方法為一元線性回歸法和多元線性回歸法。如果2個變量的關(guān)系是線性的,就可以建立如下一元回歸方程:y=a+bx,式中:a為回歸常數(shù);b為回歸系數(shù)。運用最小二乘法原理就可方便求出a,b的值,交通量分析中的一些經(jīng)濟指標預(yù)測常使用一元回歸法。由于交通量增長與影響區(qū)人口、經(jīng)濟、車輛保有量等因素之間有著密切關(guān)系,因此可使用多元線性回歸方法進行預(yù)測,其方程形式如下:式中:Yt為t年交通量;xit為第i個指標第t年值,xit由項目影響區(qū)的經(jīng)濟、人口、車輛保有量等指標構(gòu)成;a,b為回歸系數(shù)。

1.2、彈性系數(shù)法

應(yīng)用細節(jié)公路規(guī)劃設(shè)計,屬于一項綜合性的社會經(jīng)濟活動,期間所派生的各種需求,體現(xiàn)出設(shè)計工作的復(fù)雜性和多樣性,就交通量預(yù)測工作來說,有必要借助一套行之有效的預(yù)測方法,以便在錯綜復(fù)雜的影響因素當中,理順工可預(yù)測的思路,其中彈性系數(shù)法就是一種有效的預(yù)測方法。這種方法的應(yīng)用,要求將公路交通、公路所在區(qū)域產(chǎn)業(yè)布局、人口規(guī)模等,作為統(tǒng)一的整體,推斷出公路交通需求量的大小,尤其是兩市或者兩省交接位置的公路,準確掌握其交通需求的變化規(guī)律。也就是說,彈性系數(shù)法需要把握公路工程所在區(qū)域的整體經(jīng)濟發(fā)展狀況,將公路的交通運輸作為該區(qū)域經(jīng)濟發(fā)展的組成部分,從經(jīng)濟性的視角確定公路交通增長率與國民經(jīng)濟發(fā)展增長率之間的關(guān)系。在應(yīng)用該方法時,要盡量收集公路交通量,采用回歸分析等方法,最終得出客車運輸量、貨車運輸量、通道交通量等彈性系數(shù)。

2、交通量預(yù)測經(jīng)驗總結(jié)

2.1、嚴格遵循規(guī)劃指導(dǎo)要求

任何公路工可交通量預(yù)測,均建立在當?shù)爻鞘幸?guī)劃指導(dǎo)的基礎(chǔ)上,并且不能夠脫離周圍其他交通路線交通流的轉(zhuǎn)移關(guān)系,需要通過對公路工程交通量的逐年預(yù)測,明確各個工程項目之間的相互關(guān)系,進而論證公路工程的交通地位,給出多種可能性的推薦方案,作為工程科學(xué)設(shè)計的重要依據(jù)。如果違背規(guī)劃指導(dǎo)要求,公路工可交通量的預(yù)測結(jié)果,可能會出現(xiàn)過于夸大或者依據(jù)不足等問題,而公路工可交通預(yù)測工作本身的復(fù)雜性因素很多,因此只有在完全遵循規(guī)劃指導(dǎo)要求的基礎(chǔ)上,才能夠有效確保工可交通量預(yù)測不會有悖于實際,提高預(yù)測結(jié)果的適用性。

2.2、應(yīng)用完善的預(yù)測轉(zhuǎn)移、誘增交通量的方法

轉(zhuǎn)移交通量是指擬建交通項目建成后,從其它交通工程設(shè)施及由于競爭關(guān)系而從其它交通方式轉(zhuǎn)移過來的交通量。誘增交通量是由于道路新建或改建,特別是高等級公路的建設(shè)而誘發(fā)的新生交通量,由于轉(zhuǎn)移和誘增交通量是在該項目全線建成兩三年后才逐漸體現(xiàn)出來,當今要想對這兩種交通量進行準確的預(yù)測還存在一定的難度,應(yīng)找出更加全面與合理的預(yù)測方法。

2.3、取消規(guī)范中對交通量的嚴格限制條件

將道路在路網(wǎng)整體功能發(fā)揮上所起的作用以及不同地區(qū)道路需求方面的差異納入規(guī)范要求。同時,在評判擬建項目的可行性時,不僅要考慮到交通流量而且應(yīng)加入相關(guān)路網(wǎng)的因素,并針對不同區(qū)域?qū)煌康牟煌筮M行適當劃分,因地制宜,制定出更加合理的評價標準。

2.4、從綜合運輸?shù)慕嵌确治鲱A(yù)測未來通道內(nèi)公路

運輸量應(yīng)較為客觀地反應(yīng)各種運輸方式在未來綜合運輸網(wǎng)中的作用和地位,以減少目前按各種運輸方式預(yù)測運輸量普遍存在的夸大現(xiàn)象,避免引發(fā)以后各種運輸方式之間的惡性循環(huán)。

公路交通量預(yù)測嚴重失準問題,會大大削弱公路工程項目可行性分析以及后評價結(jié)論的有效性,進而影響管理者的科學(xué)決策。應(yīng)從各方面找出產(chǎn)生這一問題的原因和解決這一問題的方法,系統(tǒng)而根本性地提高公路交通量預(yù)測的準確性。

2.5、轉(zhuǎn)移交通量預(yù)測法

轉(zhuǎn)移交通量是指擬建交通項目建成后,從其它交通工程設(shè)施及由于競爭關(guān)系而從其它交通方式轉(zhuǎn)移過來的交通量。應(yīng)采用定性與定量相結(jié)合的方法進行預(yù)測。對通道未來客運量進行預(yù)測,計算鐵路、軌道的運輸效益,確定鐵路、軌道交通的分擔比例,從而可確定未來通道公路交通所承擔的客運量。

2.6、誘增交通量預(yù)測法

在實際工程中,項目對沿途交通的誘增量,我們可以看作為是對地區(qū)經(jīng)濟的誘增影響,通常用模型處理,這種模型是以地區(qū)間的接近性為變量建立的。項目使地區(qū)間的接近性發(fā)生大幅度變化,因此也改變了地區(qū)間的相互依賴性。據(jù)此,考慮依照修正的重力模型法的潛在模型,在趨勢型經(jīng)濟結(jié)構(gòu)的基礎(chǔ)上,來反映項目的誘增經(jīng)濟效果。

模型由“經(jīng)濟的接近性”和“工農(nóng)業(yè)總產(chǎn)值潛力”構(gòu)成,前者是以時間距離為變量來定義各區(qū)的接近性,后者可由這種接近性和工農(nóng)業(yè)總產(chǎn)值的關(guān)系來確定工農(nóng)業(yè)生產(chǎn)的潛力。

3、交通量預(yù)測的發(fā)展

公路交通系統(tǒng)是隸屬于運輸系統(tǒng)的一個子系統(tǒng),交通預(yù)測中不確定的因素多。這種不確定因素一方面來自環(huán)境的不確定性,包括政策和人的心理要求等等;另一方便來自預(yù)測技術(shù)本身的不確定性,包括模型的選用,參數(shù)的標定等。要使交通量預(yù)測這門研究更加成熟可靠,就不能僅僅是熟悉預(yù)測技術(shù)或者僅僅了解交通發(fā)展,這樣是難以做好預(yù)測工作的,必須將定性定量定時預(yù)測有機結(jié)合起來,以把握交通系統(tǒng)未來總體發(fā)展趨勢,交通分布的各種可能性及其影響,并在充分分析的基礎(chǔ)上得出交通量的大小及其在時間上的變化,以使我國公路交通能專注實際,繼續(xù)發(fā)展。

4、結(jié)語

公路交通系統(tǒng)是隸屬于運輸系統(tǒng)的一個子系統(tǒng),交通預(yù)測中不確定的因素多。這種不確定因素一方面來自環(huán)境的不確定性,包括政策和人的心理要求等等;另一方便來自預(yù)測技術(shù)本身的不確定性,包括模型的選用,參數(shù)的標定等。要使交通量預(yù)測這門研究更加成熟可靠,就不能僅僅是熟悉預(yù)測技術(shù)或者僅僅了解交通發(fā)展,這樣是難以做好預(yù)測工作的,必須將定性定量定時預(yù)測有機結(jié)合起來,以把握交通系統(tǒng)未來總體發(fā)展趨勢,交通分布的各種可能性及其影響,并在充分分析的基礎(chǔ)上得出交通量的大小及其在時間上的變化,以使我國公路交通能專注實際,繼續(xù)發(fā)展。

參考文獻

[1]劉世鐸.基于多元主體視角的公路暢通合理性評價理論與方法[D].長安大學(xué),2011.

[2]宣江平.基于公路主體的公路規(guī)模決策機理研究[D].長安大學(xué),2012.

[3]李永航.城際高速公路通道交通量預(yù)測方法研究[D].廣西大學(xué),2012.

第9篇:農(nóng)業(yè)預(yù)測方法范文

網(wǎng)絡(luò)出

>> 馬爾可夫鏈模型在人力資源預(yù)測中的應(yīng)用 馬爾可夫及隱馬爾可夫模型在數(shù)據(jù)挖掘中的應(yīng)用 馬爾可夫鏈在股市投資中的應(yīng)用 馬爾可夫鏈在移動通信中的應(yīng)用 基于加權(quán)馬爾可夫鏈和GM(1,1)模型的公共危機事件預(yù)測研究 馬爾可夫鏈在股票中的運用 帶輸入的吸收馬爾可夫鏈在經(jīng)濟預(yù)測中的應(yīng)用 時間序列馬爾可夫鏈在藥品消耗預(yù)測中的應(yīng)用 馬爾可夫鏈在吉林省高粱單產(chǎn)年景預(yù)測中的應(yīng)用 馬爾可夫鏈在軍隊行政干部調(diào)整中的應(yīng)用 馬爾可夫鏈在股價預(yù)測中的應(yīng)用分析 隱馬爾可夫模型在經(jīng)濟預(yù)測中的應(yīng)用 隱馬爾可夫模型在客戶關(guān)系動態(tài)研究中的應(yīng)用 馬爾可夫模型在輪胎市場預(yù)測中的應(yīng)用 灰色馬爾可夫模型在廣東旅游人數(shù)預(yù)測中的應(yīng)用 馬爾可夫模型在客戶規(guī)劃中的應(yīng)用研究 隱馬爾可夫后處理模型在視頻人臉識別中的應(yīng)用 馬爾可夫模型在VoIP通話質(zhì)量實時評估中的應(yīng)用 隱馬爾可夫模型在維吾爾語詞性標注中的應(yīng)用 吸收馬爾可夫鏈模型在山西省農(nóng)業(yè)轉(zhuǎn)移人口就業(yè)趨勢預(yù)測中的應(yīng)用研究 常見問題解答 當前所在位置:l

基金項目:北京市科技計劃課題 (Z141100006014049);國家科技重大專項課題(2012ZX07205-005)

作者簡介:賀 娟(1988-),女,陜西延安人,主要從事城市暴雨及洪水模擬方面研究。E-mail:

通訊作者:王曉松(1962-),男,河北人,教授級高級工程師,博士,主要從事高壩泄洪消能、河流生態(tài)修復(fù)與治理方面研究。E-mail:

摘要:根據(jù)1960年-2011年的實測入庫流量資料,以河川徑流量為相依隨機變量,介紹加權(quán)馬爾可夫鏈模型的相關(guān)概念及預(yù)測未來一年入庫流量的步驟,采用均值-標準差分級法把入庫流量序列劃分成枯、偏枯、偏豐、豐4種狀態(tài)。以各階自相關(guān)系數(shù)為權(quán)重,預(yù)測2010年-2011年的入庫流量,將其所在狀態(tài)區(qū)間與實測值進行對比。結(jié)果表明,加權(quán)馬爾可夫鏈模型對密云水庫入庫流量預(yù)測精度較高,以此又對2012年-2013年的入庫流量進行了預(yù)測。最后對其遍歷性和平穩(wěn)分布進行分析,計算入流豐、枯狀態(tài)在實測序列中的重現(xiàn)期,其中出現(xiàn)偏枯狀態(tài)的概率最大,由此預(yù)測密云水庫未來的入庫流量處于偏枯狀態(tài)。

關(guān)鍵詞:加權(quán)馬爾可夫鏈模型;密云水庫;入庫流量;轉(zhuǎn)移概率矩陣;馬氏性檢驗;自相關(guān)系數(shù);偏枯

中圖分類號:TV213.4 文獻標志碼:A 文章編號:

1672-1683(2015)04-0618-04

Application of the weighted Markov chain model in the inflow prediction of the Miyun Reservoir

HE Juan,WANG Xiao-song,WANG Cai-yun

(Department of Hydraulics, China Institute of Water Resources and Hydropower Research,Beijing 100038,China)

Abstract:

According to the actual inflow data of the Miyun Reservoir from 1960 to 2011,river runoff was selected as the random variable,and the related concept of the weighted Markov chain model and the steps for the inflow prediction in the incoming one year were introduced.The classification method of average-standard was used to divide the inflow sequence into four conditions,including drought,lean drought,lean wet,and wet.The autocorrelation was regarded as weight coefficient to predict inflow between 2010 and 2011,which were compared with the measured data.The results showed that the weighted Markov chain model can predict inflow of the Miyun Reservoir with high precision.Therefore,the model was used to predict inflow between 2012 and 2013.Finally,the ergodicity and stationary distribution of Markov chain were analyzed,and the return periods of observed sequence under the wet and dry conditions were calculated,which suggested that the occurrence probability of lean drought is the largest.The inflow of the Miyun Reservoir was predicted to be lean drought in the future.

Key words:weighted Markov chain model;Miyun Reservoir;reservoir inflow;transition probability matrix;Markov property testing;autocorrelation coefficient;lean drought

密云水庫是京津唐地區(qū)第一大水庫,為北京最重要的地表飲用水源。但是,近年來,在“自然-人工”二元因素共同作用的影響下,其入庫流量呈減少態(tài)勢,1999年以后減少的趨勢尤為明顯[1]。因此,對水庫未來的來水量和變化趨勢做出準確的預(yù)測關(guān)系到水庫的調(diào)度應(yīng)用及北京市的用水安全。夏樂天[2-3]等人研究了加權(quán)馬爾可夫鏈在降水狀況預(yù)測中的應(yīng)用和馬爾可夫鏈預(yù)測方法的統(tǒng)計試驗研究;王永兵[4]等人利用馬爾可夫鏈對水庫入庫徑流狀態(tài)進行了預(yù)測;馮利華,陳雄[5]利用馬爾可夫鏈研究了區(qū)域干旱的變化趨勢;馮耀龍[6]等利用馬爾可夫鏈對河流豐枯狀況進行了預(yù)測;楊國范,劉冰等[7]利用加權(quán)馬爾可夫鏈對河流水質(zhì)進行了預(yù)測;馮小明,劉桂清等[8]對灌溉用水量進行了預(yù)測;Zekai Sen等[9]對洪水來流量的預(yù)測也采用了馬爾可夫鏈。目前的預(yù)測結(jié)果表明,加權(quán)馬爾可夫鏈的預(yù)測精度較高,且在物理成因上也較為合理[10]。本文采用加權(quán)馬爾可夫鏈模型對密云水庫的來水趨勢進行預(yù)測,預(yù)測趨勢跟實測資料吻合較好。

1 馬爾可夫鏈的介紹

1.1 馬爾可夫鏈的定義及分類

設(shè)有隨機過程{Xn,n∈T}若對于任意整數(shù)n∈T和任意i0,i1,i2,…,in+1∈I條件概率滿足

P{Xn+1=in+1|X0=i0,X1=i1,…,Xn=n}=

P{Xn+1=in+1|Xn=in}(1)

則稱{Xn,n∈T}為馬爾可夫鏈,簡稱馬氏鏈[11-12]。式中:in表示隨機過程Xn在n時刻的狀態(tài),P表示事件發(fā)生的概率。

馬爾可夫鏈預(yù)測方法可分為3種[2]:基于絕對分布的馬爾可夫鏈預(yù)測方法、疊加馬爾可夫鏈預(yù)測方法和加權(quán)馬爾可夫鏈預(yù)測方法。其中預(yù)測精度最高的是加權(quán)馬爾可夫鏈預(yù)測方法,最低的是基于絕對分布的馬爾可夫鏈預(yù)測方法。

1.2 轉(zhuǎn)移概率矩陣[11]

一步轉(zhuǎn)移概率為

Pi,j(n,n+1)=P(Xn+1=j|Xn=i)(2)

K步轉(zhuǎn)移概率表示為

Pi,j(n,n+k)=P(Xn+k=j|Xn=i)(3)

所有轉(zhuǎn)移概率構(gòu)成的轉(zhuǎn)移概率矩陣具有的性質(zhì)如下:0≤Pi,j≤1;∑mj=1Pi,j=1。

若轉(zhuǎn)移概率與時刻n無關(guān),則稱為齊次馬爾可夫鏈。用P(1)表示一步轉(zhuǎn)移概率矩陣,P(k)表示k步轉(zhuǎn)移概率矩陣,則有:

Pk=P(1)k(4)

應(yīng)用上遇到的馬氏鏈一般不滿足“時齊”條件,因此僅討論一步轉(zhuǎn)移概率[10]。

1.3 加權(quán)馬爾可夫鏈的預(yù)測步驟[3-8,10]

(1)計算均值 。

=1n∑nt=1x(t)(5)

(2)計算標準差s。

s=1n-1∑nt=1x(t)-2 (6)

(3)指標值的樣本均值-標準差分級。

根據(jù)均值及標準差,一般將實測序列分為5個狀態(tài),分級標準見表1。

(4)轉(zhuǎn)移概率矩陣的估算。

(5)馬氏性檢驗。

可用χ2統(tǒng)計量來檢驗離散序列的馬氏鏈,設(shè)研究序列包含m個可能的狀態(tài),用fij(i,j∈E)記為轉(zhuǎn)移頻數(shù)概率矩陣,邊際概率P.j的計算公式如下。

P.j=∑mi=1fij/∑mi=1∑mj=1fij(7)

用Pi,j(i,j∈E)表示轉(zhuǎn)移概率矩陣元素。當m較大時,χ2統(tǒng)計量如下:

χ2=2∑mi=1∑mj=1fij|ln(Pi,j/Pj)|(8)

服從自由度為(m-1)2的χ2分布。給定置信度α,查表可χ2α(m-1)2的值,χ2>χ2α(m-1)2,則零假設(shè)被拒絕,即認為該序列具有“馬氏性”。

(6)各階自相關(guān)系數(shù)rk,(k∈E)計算。

rk=∑n-kt=1(xt-)(xt+k-)/∑nt=1(xt-)2 (9)

式中:xt為第t時段的指標值;為指標值均值;n為指標值序列長度;rk為第k階(滯時為k年)自相關(guān)系數(shù)。對各階相關(guān)系數(shù)規(guī)范化如下:

wk=|rk|/∑mk=1|rk|(10)

式中:wk為各種滯時的馬爾可夫鏈的權(quán)重。

(7)預(yù)測。

將同一狀態(tài)的各預(yù)測概率加權(quán)和作為處于該狀態(tài)的預(yù)測概率,即

Pi=∑mk=1wkPki (11)

Max{Pi,i∈E}對應(yīng)的狀態(tài)為該時段的預(yù)測狀態(tài),確定該時段的指標值,并將其加入到原序列之中,再重復(fù)上述步驟,就可預(yù)測下時段的指標值狀態(tài)。

2 工程實例

密云水庫1960年-2009年入庫流量資料[13]見表2,利用加權(quán)馬爾可夫鏈模型對2010年的入庫流量進行預(yù)測。

2.1 均值、標準差狀態(tài)分級計算

依據(jù)表2,得到該序列的均值x=9.259億m3,標準差s=5.443,由于樣本序列不多,所以將其劃分為枯、偏枯、偏豐、豐4個狀態(tài)[8,14],徑流狀態(tài)分級標準見表3,序列狀態(tài)見表2。

2.2 建立轉(zhuǎn)移概率矩陣

對步驟1得到的結(jié)果進行統(tǒng)計,可得不同滯時的轉(zhuǎn)移概率矩陣如下:

步長為1的一步轉(zhuǎn)移概率矩陣

2.3 馬氏性檢驗

對步長為1的一步轉(zhuǎn)移頻數(shù)矩陣及轉(zhuǎn)移概率矩陣進行馬氏性檢驗,計算結(jié)果見表4及表5。

χ2的值為49.588,選取顯著性水平α=0.05,查表可得χ2α(4-1)2=16.919,χ2>χ2α(m-1)2,可以驗證該序列具有馬氏性。

2.4 自相關(guān)系數(shù)及權(quán)重計算

由式(9)、式(10)可得各階自相關(guān)系數(shù)及各種滯時的權(quán)重,見表6。

2.5 預(yù)測

依據(jù)2006年-2009年的入庫流量及所對應(yīng)的狀態(tài)轉(zhuǎn)移矩陣對2010年徑流量狀態(tài)進行預(yù)測,結(jié)果見表7。

由表7可知,Max{Pi,i∈E}=0.736,所對應(yīng)的i=1,處于區(qū)間[0,6.538],即2010年入庫流量狀態(tài)為枯水年狀態(tài)。2010年的實測資料是3.196億m3∈[0,6.538],與實測結(jié)果相吻合。同理,用1960年-2010 年的資料預(yù)測出2011年的水庫入流狀態(tài)處于區(qū)間[0,6.538],實測值為4.123億m3,預(yù)測結(jié)果較為合理。最后預(yù)測出2012年和2013年的入庫流量分別為5.102億m3、4.380億m3,處于枯水年狀態(tài)。

2.6 馬爾可夫鏈的特征[10,14-15]分析

具有遍歷性的馬爾可夫鏈,當轉(zhuǎn)移的步數(shù)n足夠大時,從系統(tǒng)的任何一個狀態(tài)i轉(zhuǎn)移到狀態(tài)j的概率都近似等于π(j)。通過分析得出此鏈是遍歷的(不可約、非周期、正常反鏈),因此,此鏈存在唯一的平穩(wěn)分布即為它的極限分布。設(shè)此鏈的平穩(wěn)分布為{πj,j∈E},平穩(wěn)分布、極限分布與各狀態(tài)的重現(xiàn)期的計算公式如下:

∑j∈Eπj=1;πj=∑i∈EπjPij (12)

利用密云水庫1960年-2009年的資料,以相依性較強的步長為4的馬氏的特征分析為例。計算所得的值見表8。

uj(πj=1/uj)表示系統(tǒng)從狀態(tài)j出發(fā),首次返回狀態(tài)j的平均時間,同時也是各狀態(tài)的極限分布。由表8可知,各狀態(tài)的重現(xiàn)期為T1=1.991年;T2=5.105年;T3=8.264年;T4=5.531年。根據(jù)現(xiàn)有的實測資料,由本文確定的分級標準,枯水年出現(xiàn)的次數(shù)最多,偏枯年出現(xiàn)的次數(shù)次之,這兩種狀態(tài)出現(xiàn)的概率為0.698 1,從而可以說明密云水庫來水長期處于枯水和偏枯狀態(tài)的可能性比較大。

3 結(jié)語

根據(jù)馬爾可夫鏈的預(yù)測理論,馬爾可夫鏈針對的是一組離散的數(shù)據(jù)序列,其最基本的特征是:“馬氏性”,也稱“無后效性”。預(yù)測結(jié)果為入庫流量的某一個狀態(tài),是一個區(qū)間,而不是一個具體的數(shù)值,在滿足工程要求的前提下,可以較準確的預(yù)測出入庫流量的變化趨勢。通過對2010年-2013年入庫流量的預(yù)測,可以看出馬爾可夫鏈模型能較好的預(yù)測來水狀況。根據(jù)馬爾可夫鏈的遍歷性和平穩(wěn)分布,由實測入庫流量序列中出現(xiàn)枯、偏枯狀態(tài)的年份比較多和來水呈逐漸下降的趨勢預(yù)測出密云水庫未來來水處于比較短缺的狀態(tài)。這對水庫管理者和流域規(guī)劃者具有一定的參考價值。

參考文獻(References):

[1] 高迎春,姚治君,劉寶勤,等.密云水庫入庫徑流變化趨勢及動因分析[J].地理科學(xué)進展,2002,21(6):546-553.(GAO Ying-chun,YAO Zhi-jun,LIU Bao-qin,et al.Evolution trend of miyun reservoir inflow and its motivating factors analysis[J].Progress in Geography,2002,21(6):546-553.(in Chinese))

[2] 夏樂天,朱元`,沈永梅.加權(quán)馬爾可夫鏈在降水狀況預(yù)測中的應(yīng)用[J].水利水電科技進展,2006,26(6):20-24.(XIA Le-tian,ZHU Yuan-sheng,SHEN Yong-mei.Application of weighted Markov Chain to prediction of precipitation[J].Advances in Science And Technology of Water Resources,2006,26(6):20-24.(in Chinese))

[3] 夏樂天,朱元`.馬爾可夫鏈預(yù)測方法的統(tǒng)計試驗研究[J].水利學(xué)報,2007(增刊):372-378.(XIA Le-tian,ZHU Yuan-sheng.Study on statistical experiments of Markov Chain prediction methods[J].Journal of Hydraulic Engineering,2007(supplement):372-378.(in Chinese))

[4] 王永兵,胡小梅,彭丹芬,等.馬爾可夫鏈在水庫入庫徑流狀態(tài)預(yù)測中的應(yīng)用[J].水電與新能源,2011(4):18-21.(WANG Yong-bing,HU Xiao-mei,PENG Dan-fen,et al.The application of Markov Chain to forecasting reservoir inflow state[J].Hydropower and Energy,2011(4):18-21.(in Chinese))

[5] 馮利華,陳雄.浙江干旱的變化趨勢[J].農(nóng)業(yè)系統(tǒng)科學(xué)與綜合研究,2001(3):177-179.(FENG Li-hua,CHEN Xiong.Change tendency of drought in zhejiang province[J].System Sciences and Comprehensive studies in Agriculture,2001(3):177-179.(in Chinese))

[6] 馮耀龍,韓文秀.加權(quán)馬爾可夫鏈在河流豐枯狀況預(yù)測中的應(yīng)用[J].系統(tǒng)工程理論與實踐,1999(10):89-93.(FENG Yao-long,HAN Wen-xiu.The application of weighted Markov-Chain to the prediction of river runoff state[J].Systems Engineering-theory and Practice,1999(10):89-93.(in Chinese))

[7] 楊國范,劉冰,金鑫,等.加權(quán)馬爾可夫鏈在河流水質(zhì)預(yù)測中的應(yīng)用[J].節(jié)水灌溉,2008,(6):16-18.(YANG Guo-fan,LIU Bing,JIN Xin et al.Application of Weighted Markov Chain method in water quality forecast[J].Water Saving Irrigation,2008,(6):16-18.(in Chinese))

[8] 馮小明,劉桂清,周莉,等.馬爾可夫鏈在灌溉用水量預(yù)測中的應(yīng)用[J].水利與建筑工程學(xué)報,2011,9(2):98-101.(FENG Xiao-ming,LIU Gui-qing,ZHOU Li,et al.Application of Markov Chain in prediction for irrigation water consumption[J].Journal of Water Resources and Architectural Engineering,2011,9(2):98-101.(in Chinese))

[9] Zekai Sen.Critical Drought Analysis by Second Order Markov Chain[J].Journal of Hydrology,1990,120(1-4):183-202.

[10] 夏樂天.馬爾可夫鏈預(yù)測方法及其在水文序列中的應(yīng)用[D].南京:河海大學(xué),2005.(XIA Le-tian.Research of Markov Chain prediction method and its application on hydrology series[D].Nanjing:Hohai University,2005.(in Chinese))

[11] 魯帆,嚴登華,王勇,等.中長期徑流預(yù)報技術(shù)與方法[M].北京:中國水利水電出版社,2012.(LU Fan,YAN Deng-hua,WANG Yong,et al.Medium and long term runoff forecasting techniques and approaches[M].Beijing:China Water Power Press,2012.(in Chinese))

[12] Daniel P,Loucks and Eelco van Bee.Water Resources Systems Planning and Management[M].The United Nations Educational,Scientific and Cultural Organization,2005.

[13] 段新光,郝麗娟,欒芳芳.密云水庫流域降水量與徑流量特征分析[J].北京水務(wù),2013(1):38-41.(DUAN Xin-guang,HAO Li-juan,LUAN Fang-fang.Analysis of the characteristics of the rainfall and runoff in the basin of the Miyun reservoir[J].Beijing Water,2013(1):38-41.(in Chinese))