前言:想要寫出一篇引人入勝的文章?我們特意為您整理了互聯(lián)網(wǎng)電視智能運(yùn)營平臺(tái)淺析范文,希望能給你帶來靈感和參考,敬請(qǐng)閱讀。
[摘要]互聯(lián)網(wǎng)電視已經(jīng)成為視頻傳輸?shù)闹饕ǖ乐?,與有線電視、IPTV并駕齊驅(qū)。隨著人工智能技術(shù)的發(fā)展,基于標(biāo)簽庫推薦的智能運(yùn)營平臺(tái)已經(jīng)成為互聯(lián)網(wǎng)電視賴以發(fā)展的重要基礎(chǔ)。本文通過深入剖析智能運(yùn)營推薦平臺(tái)及其支撐體系,總結(jié)智能運(yùn)營推薦的四種模式,探索互聯(lián)網(wǎng)電視的內(nèi)容運(yùn)營價(jià)值和流量變現(xiàn)能力。
[關(guān)鍵詞]互聯(lián)網(wǎng)電視;標(biāo)簽庫;智能運(yùn)營
與發(fā)達(dá)國家互聯(lián)網(wǎng)電視行業(yè)有所不同,在我國,互聯(lián)網(wǎng)電視是指通過公共互聯(lián)網(wǎng)傳輸,以電視機(jī)為接收終端,由國有廣播電視機(jī)構(gòu)提供可控可管視頻內(nèi)容服務(wù)的新型媒介形態(tài)。[1]隨著2010年我國三網(wǎng)融合進(jìn)入實(shí)質(zhì)推進(jìn)階段,互聯(lián)網(wǎng)電視產(chǎn)業(yè)有了長足發(fā)展。到2013年,我國互聯(lián)網(wǎng)電視機(jī)頂盒和智能電視一體機(jī)的出貨量迎來爆發(fā)式增長,以樂視、小米、阿里為代表的大批互聯(lián)網(wǎng)企業(yè)進(jìn)軍互聯(lián)網(wǎng)電視產(chǎn)業(yè),2013年也被稱為中國互聯(lián)網(wǎng)電視發(fā)展元年。我國互聯(lián)網(wǎng)電視產(chǎn)業(yè)在經(jīng)歷了早期的規(guī)?;Φ匕l(fā)展之后,2014年后迎來了“史上最嚴(yán)監(jiān)管”。隨著監(jiān)管力度的不斷加強(qiáng),內(nèi)容提供商、內(nèi)容服務(wù)牌照商、集成業(yè)務(wù)牌照商、網(wǎng)絡(luò)運(yùn)營商、硬件設(shè)備商和IP服務(wù)商等產(chǎn)業(yè)鏈各方不斷調(diào)整策略,探索新的發(fā)展模式。近年來,互聯(lián)網(wǎng)電視產(chǎn)業(yè)將滿足用戶需求作為產(chǎn)品的終極向?qū)?,更加重視大?shù)據(jù)和智能化技術(shù)的運(yùn)用,深耕內(nèi)容,拓展運(yùn)營,不斷滿足用戶低頻度需求、高場景度需求和體驗(yàn)性需求,開發(fā)利基市場和長尾市場。至2018年我國互聯(lián)網(wǎng)電視用戶覆蓋超過2億戶,互聯(lián)網(wǎng)電視家庭覆蓋率超過40%,成為視頻傳輸?shù)闹饕ǖ乐?,與有線電視、IPTV并駕齊驅(qū)。[2]互聯(lián)網(wǎng)電視具有雙向互動(dòng)的獨(dú)有優(yōu)勢,能夠采集到數(shù)以億計(jì)用戶每天產(chǎn)生的海量數(shù)據(jù)信息?;ヂ?lián)網(wǎng)電視牌照商運(yùn)營主體應(yīng)如何有效分析和挖掘數(shù)據(jù),進(jìn)行判斷和分析,實(shí)現(xiàn)高效率的價(jià)值匹配,將海量內(nèi)容和增值產(chǎn)品智能化推薦給用戶,提升內(nèi)容運(yùn)營價(jià)值和流量變現(xiàn)能力,已成為互聯(lián)網(wǎng)電視產(chǎn)業(yè)的核心競爭力所在。從現(xiàn)階段互聯(lián)網(wǎng)電視產(chǎn)業(yè)的內(nèi)容運(yùn)營形態(tài)來看,已由單一依靠人工推薦轉(zhuǎn)向基于標(biāo)簽庫的智能運(yùn)營推薦,從運(yùn)營管理角度來看,這極大解放了屏幕運(yùn)營的生產(chǎn)力,從運(yùn)營成效角度來看,實(shí)現(xiàn)了千人千面,為用戶提供了更多元的產(chǎn)品形態(tài)。
一、標(biāo)簽庫的分類與作用
標(biāo)簽庫是互聯(lián)網(wǎng)電視智能運(yùn)營推薦平臺(tái)的核心要素,標(biāo)簽庫的創(chuàng)建和完善是一切運(yùn)營策略生成的基礎(chǔ)。根據(jù)不同主體,標(biāo)簽庫分為內(nèi)容標(biāo)簽庫、用戶標(biāo)簽庫和廣告標(biāo)簽庫三種類型。由于針對(duì)的主體不同,各標(biāo)簽庫獲取數(shù)據(jù)的來源也不盡相同。內(nèi)容標(biāo)簽庫的數(shù)據(jù)來源不僅包括內(nèi)容運(yùn)營系統(tǒng)中媒資庫的基礎(chǔ)屬性標(biāo)簽,也包括從豆瓣、時(shí)光、1905等影音資料庫網(wǎng)站上實(shí)時(shí)抓取公開數(shù)據(jù)而得到的用戶定義標(biāo)簽?;A(chǔ)屬性標(biāo)簽包括視頻分類(如:電視劇、電影、紀(jì)錄片、動(dòng)漫、動(dòng)畫片等)、視頻類型(如:科幻、喜劇、動(dòng)作、懸疑、奇幻等)、導(dǎo)演、演員、出品年代、獲獎(jiǎng)情況等。用戶定義標(biāo)簽則包括用戶評(píng)分、評(píng)論數(shù)量、評(píng)價(jià)標(biāo)簽(如:漫威、超級(jí)英雄、真實(shí)事件改編等)、協(xié)同過濾推薦標(biāo)簽(如根據(jù)用戶的評(píng)分、評(píng)價(jià)、點(diǎn)贊、分享等歷史行為數(shù)據(jù),向喜歡《飛馳人生》的用戶推薦《羞羞的鐵拳》、《西虹市首富》等協(xié)同過濾推薦標(biāo)簽)。建設(shè)內(nèi)容標(biāo)簽庫的主要目的在于通過對(duì)內(nèi)容進(jìn)行標(biāo)簽矢量化處理,有效進(jìn)行數(shù)據(jù)分析。例如:電影《流浪地球》通過標(biāo)簽矢量化處理后,形成的向量集{2019,科幻,災(zāi)難,太空,劉慈欣,小說改編,國產(chǎn)片,9.5分,…}成為識(shí)別這部影片的標(biāo)簽代碼。當(dāng)媒資庫的視頻內(nèi)容全部完成標(biāo)簽矢量化處理后,則實(shí)現(xiàn)了內(nèi)容標(biāo)簽庫的初步創(chuàng)建。內(nèi)容標(biāo)簽庫也會(huì)隨著視頻內(nèi)容的不斷增加,用戶定義標(biāo)簽的不斷調(diào)整,人工定義標(biāo)簽的不斷豐富、對(duì)視頻名稱進(jìn)行語義分析和關(guān)鍵字提取使標(biāo)簽不斷補(bǔ)充等手段而得以持續(xù)性改進(jìn)和完善。用戶標(biāo)簽庫的數(shù)據(jù)來源于從運(yùn)營商運(yùn)營支撐系統(tǒng)中提取的用戶基礎(chǔ)屬性標(biāo)簽和通過終端日志上報(bào)大數(shù)據(jù)分析平臺(tái)并清洗沉淀下來的用戶行為標(biāo)簽。基礎(chǔ)屬性標(biāo)簽包括用戶屬性標(biāo)簽和終端屬性標(biāo)簽兩大類,前者包括地域、手機(jī)號(hào)碼、性別、年齡、行業(yè)等,后者包括出貨地市、終端型號(hào)、終端版本、終端狀態(tài)、激活時(shí)間等。用戶行為標(biāo)簽包括娛樂行為標(biāo)簽、收視行為標(biāo)簽、消費(fèi)行為標(biāo)簽、內(nèi)容偏好標(biāo)簽和復(fù)合標(biāo)簽等五大類,其中娛樂行為標(biāo)簽包括游戲時(shí)長,游戲次數(shù),點(diǎn)擊次數(shù)、下載次數(shù)等;收視行為標(biāo)簽包括有線或無線收視、收視時(shí)長、開機(jī)次數(shù)、收視次數(shù)、活躍情況、點(diǎn)擊次數(shù)等;消費(fèi)行為標(biāo)簽包括每用戶平均收入(AverageRevenuePerUser)、最近購買時(shí)間、消費(fèi)片單、消費(fèi)金額等;內(nèi)容偏好標(biāo)簽則是根據(jù)一段時(shí)間內(nèi)用戶收視內(nèi)容所對(duì)應(yīng)的內(nèi)容標(biāo)簽庫而生成;復(fù)合標(biāo)簽則是針對(duì)用戶的多種標(biāo)簽組合而再定義生成,例如將打上內(nèi)容偏好為韓劇、收視時(shí)長一周內(nèi)超過3小時(shí)、收視次數(shù)一周內(nèi)大于3次等標(biāo)簽的用戶綜合定義為“韓劇愛好者”。建設(shè)用戶標(biāo)簽庫的核心在于對(duì)用戶基礎(chǔ)屬性和行為進(jìn)行標(biāo)簽化處理,將用戶按照不同的維度進(jìn)行矢量化,建立用戶的全景視圖,其目的是實(shí)現(xiàn)快速圈人的精準(zhǔn)推薦和精準(zhǔn)營銷。廣告標(biāo)簽庫則是將廣告媒資庫中的內(nèi)容信息通過人工定義的方式進(jìn)行標(biāo)簽向量化處理。例如,完成標(biāo)簽矢量化處理后,通過一條向量集{賽車,越野,冒險(xiǎn),運(yùn)動(dòng),公路,科技,德國,…}來標(biāo)簽化一則奔馳SUV的廣告宣傳片。廣告標(biāo)簽庫的核心作用是能夠?qū)V告標(biāo)簽與用戶標(biāo)簽和內(nèi)容標(biāo)簽進(jìn)行相似度匹配,進(jìn)而實(shí)現(xiàn)基于標(biāo)簽庫的智能廣告推薦。
二、智能運(yùn)營推薦平臺(tái)及其支撐體系
在基于標(biāo)簽庫的智能運(yùn)營推薦平臺(tái)及其支撐體系的運(yùn)行中,先由終端生成終端日志和播放行為日志,日志內(nèi)容經(jīng)過聯(lián)機(jī)在線處理和非實(shí)時(shí)處理后,進(jìn)入到大數(shù)據(jù)采集和清洗環(huán)節(jié),數(shù)據(jù)處理完畢后再進(jìn)行標(biāo)簽向量化處理形成用戶標(biāo)簽庫、內(nèi)容標(biāo)簽庫和廣告標(biāo)簽庫,然后通過相似度算法匹配生成榜單推薦、內(nèi)容運(yùn)營推薦和廣告運(yùn)營推薦,最后通過內(nèi)容運(yùn)營系統(tǒng)和廣告運(yùn)營系統(tǒng)識(shí)別對(duì)應(yīng)內(nèi)容和廣告的元數(shù)據(jù),實(shí)現(xiàn)用戶終端的個(gè)性化推送。(圖1)
1.終端日志和播放行為日志
終端日志收集了用戶在使用終端時(shí)間段內(nèi)的所有操作日志。按照日志類型大致分為開關(guān)機(jī)日志、播放行為日志和其他行為日志等。因終端日志每天產(chǎn)生的數(shù)據(jù)量較大,故采取非聯(lián)機(jī)處理方式,按日上傳分析。播放行為日志則僅僅收集了用戶在播放內(nèi)容過程中產(chǎn)生的操作日志,屬于終端日志的一部分,比終端日志的數(shù)據(jù)量小很多,故采取聯(lián)機(jī)在線處理方式對(duì)播放行為日志進(jìn)行實(shí)時(shí)分析。
2.日志聯(lián)機(jī)在線處理和非實(shí)時(shí)處理
日志聯(lián)機(jī)在線處理是指將播放行為日志,比如播放內(nèi)容與時(shí)段、播放與暫停的時(shí)間、暫停到下一次播放所經(jīng)過的時(shí)間等,實(shí)時(shí)地上傳到大數(shù)據(jù)中心進(jìn)行處理。日志非實(shí)時(shí)處理則是將一天內(nèi)的所有終端日志,比如開關(guān)機(jī)時(shí)間、終端心跳、遙控器點(diǎn)擊操作等,以非實(shí)時(shí)集中的方式上傳到大數(shù)據(jù)中心進(jìn)行處理。
3.大數(shù)據(jù)采集和數(shù)據(jù)清洗
按照日志處理的方式不同,大數(shù)據(jù)采集分為實(shí)時(shí)采集和非實(shí)時(shí)采集兩種,所使用到的技術(shù)也有差異。前者通常使用kafka采集工具將數(shù)據(jù)采集到Spark或Storm中,再經(jīng)過數(shù)據(jù)清洗轉(zhuǎn)換,生成實(shí)時(shí)用戶收視行為標(biāo)簽,供智能運(yùn)營推薦系統(tǒng)使用。后者使用Flume采集工具將數(shù)據(jù)采集到Hadoop分布式文件系統(tǒng)(HDFS)中,經(jīng)過數(shù)據(jù)清洗轉(zhuǎn)換后,再將結(jié)構(gòu)化數(shù)據(jù)提供給數(shù)據(jù)倉庫(Hive),最終轉(zhuǎn)換到關(guān)系型數(shù)據(jù)庫(RDBMS),形成所需的標(biāo)簽庫數(shù)據(jù)。(圖2)
4.標(biāo)簽庫建設(shè)和智能運(yùn)營推薦
通過智能規(guī)則和人工規(guī)則對(duì)視頻內(nèi)容、用戶基礎(chǔ)屬性與行為、廣告信息進(jìn)行標(biāo)簽矢量化處理,完成對(duì)內(nèi)容標(biāo)簽庫、用戶標(biāo)簽庫和廣告標(biāo)簽庫的建設(shè)。標(biāo)簽庫的建設(shè)與不斷完善將有助于有效建立榜單、廣告、內(nèi)容與用戶之間的相互聯(lián)系,為智能運(yùn)營推薦提供基礎(chǔ)保障。在榜單運(yùn)營推薦、廣告運(yùn)營推薦和內(nèi)容運(yùn)營推薦過程,運(yùn)營人員通過相似度算法,分別將視頻內(nèi)容標(biāo)簽與媒資庫中已創(chuàng)建的榜單標(biāo)簽、將廣告標(biāo)簽與用戶的觀看內(nèi)容標(biāo)簽、將視頻內(nèi)容標(biāo)簽與媒資庫中的其他視頻內(nèi)容標(biāo)簽進(jìn)行匹配。根據(jù)匹配結(jié)果,系統(tǒng)以元數(shù)據(jù)的形式推薦較高相似度的榜單、廣告和視頻內(nèi)容。
5.內(nèi)容運(yùn)營推薦與廣告運(yùn)營推薦
根據(jù)智能運(yùn)營推薦的元數(shù)據(jù),內(nèi)容運(yùn)營系統(tǒng)和廣告運(yùn)營系統(tǒng)分別查找對(duì)應(yīng)的視頻內(nèi)容和廣告內(nèi)容,并將其推送給用戶終端。用戶終端再次生成終端日志和播放行為日志,進(jìn)入下一輪智能推薦運(yùn)營,循環(huán)往復(fù),形成信息甄選、推送、反饋和修正的閉環(huán),使內(nèi)容推薦越來越精準(zhǔn),越來越高效。
三、智能運(yùn)營推薦的四種模式
1.基于視頻內(nèi)容的智能運(yùn)營推薦
基于視頻內(nèi)容的智能運(yùn)營推薦主要是通過內(nèi)容標(biāo)簽(Tag)建立相關(guān)性鏈接。這種智能運(yùn)營推薦模式主要分為四個(gè)步驟,即提取內(nèi)容標(biāo)簽、進(jìn)行運(yùn)營策劃、制定相關(guān)規(guī)則、生產(chǎn)推薦榜單?;谝曨l內(nèi)容的智能運(yùn)營推薦主要運(yùn)用內(nèi)容相似度的推薦算法,計(jì)算向量相似度的算法有很多,包括余弦相似度、歐式距離、皮爾遜相關(guān)性等。通過這類相似度算法,可以計(jì)算某部影片A(標(biāo)簽向量{a1,a2,a3,a4,a5,a6…})與另一部影片B(標(biāo)簽向量{b1,b2,b3,b4,b5,b6…})內(nèi)容相似度c(c處于0-1之間,值越接近1,影片A與影片B的內(nèi)容相似度越高)。由于我國采取的是“可管可控”式的互聯(lián)網(wǎng)電視發(fā)展模式,在智能運(yùn)營推薦過程中,人工參與必不可少?;谝曨l內(nèi)容的智能運(yùn)營推薦主要有兩種方式:一種是先智能推薦后人工篩選,一種是先人工策劃制定提取規(guī)則后再智能排序。以《流浪地球》為例,這部電影在內(nèi)容標(biāo)簽庫中所定義的標(biāo)簽包括科幻、中國大陸、災(zāi)難、太空、劉慈欣、小說改編等。在第一種方式中,先通過計(jì)算《流浪地球》這部影片的內(nèi)容標(biāo)簽與內(nèi)容運(yùn)營系統(tǒng)中其他視頻標(biāo)簽之間的內(nèi)容相似度,再根據(jù)相似度從高到低生成智能推薦榜單,比如:1、星際穿越(相似度0.842)、2、火星救援(相似度0.751)等,最后由人工根據(jù)智能推薦榜單內(nèi)容進(jìn)行篩選并構(gòu)思策劃主題。在第二種方式中,先由人工根據(jù)《流浪地球》這部電影的內(nèi)容標(biāo)簽策劃多個(gè)運(yùn)營專題,比如“2019國產(chǎn)科幻影片”“小說改編科幻電影”等,再通過人工制定規(guī)則分別按照“2019”“中國大陸”“科幻”和“小說改編”、“科幻”等標(biāo)簽與內(nèi)容運(yùn)營系統(tǒng)中的視頻內(nèi)容標(biāo)簽進(jìn)行匹配和提取,形成推薦榜單。通過人工規(guī)則提取的榜單也同樣需要根據(jù)相似度高低生成榜單中的內(nèi)容排名。依照不同的智能運(yùn)營推薦方式,依照不同的策劃主題,最后生成的推薦榜單也不盡相同。
2.基于用戶群體行為標(biāo)簽的智能運(yùn)營推薦
基于用戶群體行為標(biāo)簽的智能運(yùn)營推薦模式首先是通過播放行為日志獲得某一地區(qū)的用戶在一段時(shí)間內(nèi)(通常為一周或一個(gè)月)的收視內(nèi)容排行,然后通過大數(shù)據(jù)計(jì)算完成收視內(nèi)容排行對(duì)應(yīng)的標(biāo)簽計(jì)數(shù),并根據(jù)標(biāo)簽權(quán)重生成詞云,最后再依據(jù)群體用戶偏好標(biāo)簽詞云進(jìn)行運(yùn)營策劃,創(chuàng)建推薦榜單。比如,某一地區(qū)一周內(nèi)的群體用戶偏好內(nèi)容標(biāo)簽詞云主要包括幽默、勵(lì)志、國產(chǎn)劇、時(shí)尚、奇幻、小說改編等關(guān)鍵詞。在先智能推薦后人工篩選方式中,系統(tǒng)根據(jù)智能規(guī)則將內(nèi)容運(yùn)營系統(tǒng)中的視頻內(nèi)容標(biāo)簽與群體用戶偏好標(biāo)簽詞云進(jìn)行相似度匹配,生成智能推薦榜單,比如:1、大話西游2、美人魚3、我不是潘金蓮等,然后人工再根據(jù)榜單內(nèi)容進(jìn)行篩選和主題策劃。在先人工策劃制定提取規(guī)則再智能排序的方式中,先由人工根據(jù)詞云中群體用戶的偏好標(biāo)簽進(jìn)行專題策劃,比如“2018年國產(chǎn)勵(lì)志電視劇”和“小說改編的奇幻劇”等,再分別提取“2018”“勵(lì)志”“電視劇”和“科幻”“小說改編”等標(biāo)簽,最后再與內(nèi)容運(yùn)營系統(tǒng)中的視頻內(nèi)容標(biāo)簽進(jìn)行匹配提取,形成推薦榜單。
3.基于用戶收視播放行為的智能推薦
基于用戶收視播放行為的智能推薦則是基于用戶的收視播放行為數(shù)據(jù),通過聯(lián)機(jī)在線的處理方式,將海量視頻內(nèi)容與用戶的興趣偏好相匹配,實(shí)時(shí)為用戶提供個(gè)性化的榜單和視頻內(nèi)容。例如用戶在一段時(shí)間內(nèi)收看了電視劇《都挺好》,智能推薦平臺(tái)基于《都挺好》這部電視劇的內(nèi)容標(biāo)簽與所有已在系統(tǒng)中創(chuàng)建的榜單和視頻內(nèi)容進(jìn)行相似度匹配,獲得排名靠前的榜單,比如“姚晨”、“家庭親情推薦榜單”等和影視劇,比如“蝸居”“金婚”“小別離”等。由于用戶的播放行為日志采取的是聯(lián)機(jī)在線處理方式,推薦榜單和視頻內(nèi)容能夠基于用戶個(gè)人收視偏好實(shí)現(xiàn)實(shí)時(shí)更新,達(dá)到增加用戶粘性和實(shí)現(xiàn)精準(zhǔn)運(yùn)營的目的。
4.基于標(biāo)簽庫的廣告智能運(yùn)營推薦
基于標(biāo)簽庫的廣告智能運(yùn)營推薦包含兩種使用場景:一是廣告定向投放,二是廣告智能推薦。廣告定向投放需要首先定位廣告的目標(biāo)用戶群體,然后將其定位轉(zhuǎn)換成用戶標(biāo)簽庫能夠識(shí)別的標(biāo)簽代碼,再通過用戶標(biāo)簽篩選出目標(biāo)用戶群體,進(jìn)而實(shí)現(xiàn)基于用戶群體的精準(zhǔn)廣告投放。廣告智能推薦則是首先需要對(duì)媒資庫中的廣告信息創(chuàng)建標(biāo)簽,再將廣告標(biāo)簽與用戶觀看的視頻內(nèi)容標(biāo)簽進(jìn)行相似度匹配,然后智能推薦與視頻內(nèi)容具有高相似度的廣告內(nèi)容,實(shí)施廣告的精準(zhǔn)投放。人工智能已成為互聯(lián)網(wǎng)電視產(chǎn)業(yè)發(fā)展的重要推手。通過基于標(biāo)簽庫推薦的智能運(yùn)營平臺(tái),互聯(lián)網(wǎng)電視能夠?yàn)橛脩敉扑]高質(zhì)量的個(gè)性化產(chǎn)品和服務(wù),不斷創(chuàng)造主動(dòng)服務(wù)的能力,實(shí)現(xiàn)有效而充分的價(jià)值流動(dòng)。借力人工智能技術(shù),未來互聯(lián)網(wǎng)電視將通過為用戶提供更優(yōu)質(zhì)的體驗(yàn)、更高效的服務(wù)和更多元的內(nèi)容產(chǎn)品,滿足客廳用戶的個(gè)性化需求,帶來更大規(guī)模的“客廳回歸潮”。
注釋:
[1]張國濤:《OTTTV———觸及電視全產(chǎn)業(yè)鏈的挑戰(zhàn)》,《傳媒》2013年第9期。
[2]格蘭研究智慧家庭研究部:《2018中國互聯(lián)網(wǎng)電視發(fā)展白皮書》,/2019/01/081032610055.shtml。
[3]成洪榮:《互聯(lián)網(wǎng)電視發(fā)展八大趨勢》,http://www.diankeji.com/net/16929.html(湖北大學(xué)新聞傳播學(xué)院副教授)
作者:張帆 單位:湖北大學(xué)新聞傳播學(xué)院